• Title/Summary/Keyword: 속도 맥동

Search Result 94, Processing Time 0.022 seconds

만기형 별의 SiO 메이저에 대한 1차원 수치계산

  • Yun, Yeong-Ju;Park, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • 장주기 Mira 변광성의 외피층에서 발생하는 SiO 메이저에 대해 non-local한 1차원 수치계산 결과를 처음으로 제시한다. 별의 유체역학적인 맥동모델에서 얻은 시간에 따른 별 주위 가스의 속도, 온도, 밀도 분포를 사용하여 계산하였다. 임의의 속도장을 갖는 구형 분자운에서의 복사전달문제를 풀었던 이전 연구에서 개발한 수치계산코드를 이용하였고, 특정 구간에서 급격한 변화를 겪는 물리량을 잘 반영할 수 있도록 수정하였다. 또한 계산에 사용되는 거대희소행렬을 압축희소행렬로 변환하여 메모리를 절약하였고 비선형방정식의 자코비안을 해석적으로 구하여 계산속도를 향상시켰다. v=1, J=1-0, J=2-1과 v=2, J=1-0 SiO 메이저의 공간분포, 상대세기 등에 대해 이전의 LVG 모델을 이용한 연구결과와 정성적으로 비교 논의한다.

  • PDF

크라이오펌프 성능평가 장치 운전특성

  • In, Sang-Ryeol;Jeong, Seung-Ho;Hwang, Pil-Seo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.364-364
    • /
    • 2011
  • 국내에서 크라이오펌프 개발이 한창 진행되고 있다. 냉동기는 GM 타입이 아니고, 맥동관 형식을 채택하여 기존 상용제품과 차별화 하고 있다. 목표성능은 질소기준 배기속도가 3,600 L/s이고 다른 성능들은 기존의 상용 펌프와 유사하며 내부 구조에 상관없이 외형적으로 비슷한 제원을 가지도록 개발되고 있다. 시제품의 성능을 국제규격에 맞추어서 평가하기 위해 성능평가 장치를 구성하고 시운전 중에 있다. 평가장치는 double dome과 single dome을 모두 갖추었으며 주 배기펌프는 측정 대상 크라이오펌프가 맡고, 보조 배기펌프는 양 시스템 모두 소형 TMP를 사용하고 있다. 크라이오 펌프를 10-10 mbar 대에서부터 성능을 측정하기 위해 평가장치는 10-11 mbar 대에서 운전하도록 목표가 살정되었다. 거의 크라이오 펌프만으로 이런 목표를 달성하기 위해 어던 과정을 거쳤는지 소개하고 이 장치를 사용하여 1,500 L/s 급, 8인치 상용 크라이오 펌프를 달아 배기속도를 측정한 결과와 제시된 값을 비교했다.

  • PDF

Regenerative Power Drive of a Induction Motor Based the Acceleration Method (FAM 법에 의한 유도형 서보 전동기의 전력회생 구동)

  • Hong, Jeng-Pyo;Nam, Jing-Rak;Kim, Jong-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.202-205
    • /
    • 2005
  • 본 연구는 스파이랄 벡터에 기초한 유도전동기 모델의 해석을 나타내고 이 해에 기초한 자계가속법(Field Acceleration Method)에 의해 순시 토크 제어와 회생전력 해석을 나타내었다. 전압지령형의 PWM제어에서 전압형 인버터에 의해 전동기가 동작할 때 전력회생이 수식으로 해석 되었다. 전압지령형의 전압 PWM 인버터에 의한 유도 전동기의 속도 서보시스템을 설계하고 이 속도제어 시스템을 이용해 가감속시의 소비(회생)전력을 측정하여 실제 시스템에서 전력 절약정도를 검토하였다. FAM법에 의한 실험을 행하고 유효성을 확인하였다. 고정자 저항의 측정오차나 변동은 여자전압에 맥동이 생겨 출력 토크에 영향이 나타는 것을 알 수 있었다.

  • PDF

A study on the critical reynolds number of steady, oscillatory and pulsating flow in a straight duct (직관덕트내에서 정상유동, 진동유동과 맥동유동의 임계레이놀즈수에 관한 연구)

  • 박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 1998
  • The critical reynolds number in a square-sectional straight duct is investigated experimentally. The experimental study for the air flow in a square-sectional straight duct is carried out to calssify critical Reynolds number on steady flow and unsteady flow. To calssify the critical Reynolds number we obtained velocity waveform by using a hot-wireanemometer and data acquisition system with photocorder.

  • PDF

Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model (曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.444-453
    • /
    • 1987
  • In the present study, a new computational closure model is proposed in order to contain physical models in the k- and .epsilon.- equations. The time scale of the third-order diffusive transport of turbulent kinetic energy in a curved streamline flow field is assumed as a function of a velocity time scale and a curvature time scale, the latter being derived from the analogy between buoyancy and streamline curvature effects on turbulence. The curvature time scale is represented by a combination of Brunt-Vaisala frequency of the curvature instability and the velocity time scale. Besides the modification of diffusive transport time scale, the destruction term in the dissipation rate equation is modeled to incorporate the streamline curvature effect on the dissipation rate of turbulent kinetic energy as a function of the ratio between velocity time scale and curvature time scale. The new curvature dependent 2-equation model is found to yield very good prediction accuracy for the various turbulent recirculating flows. Particurarly, the recovery of the mean velocity profile in the redeveloping region after the reattachment is correctly simulated by the present model.

The Effects of Pulsating Flow on Volumetric Efficiency in the Intake and Exhaust System in a Turbocharged Diesel Engine (흡.배기 시스템의 맥동류가 과급디젤기관의 체적효율에 미치는 영향)

  • Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2009
  • This paper deals with the effects of pulsating flow on volumetric efficiency, which may be generated during the gas exchange procedure, due to piston motion, valve event on intake and exhaust stroke and unsteady flow of turbocharger of a three-cylinder four stroke turbo-charged diesel engine. Consequently, volumetric efficiency affects significantly the engine performance; torque characteristics, fuel economy and further to emission and noise level. As the expansion ratio became larger the engine speed varies and torque increases, the pressure pulsation in an exhaust gas pipe acts as an increasing factor of intake air charging capacity totally. The phase and amplitude of pressure pulsation in the intake system only affects volumetric efficiency favorably, if it is well matched and tuned effectively to the engine. Thus, to verify the exact phase and amplitude of the pressure variation is the ultimate solution for the air-flow ratio assessment in the intake stroke. Some experimental results of pressure diagrams in the intake pipe and gas-flow of turbine in-outlet are presented, under various kinds of operating condition.

  • PDF

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyeon-Cheol;Lee, Haeng-Nam;Park, Gil-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.

Pressure Ripple Reduction in High Speed On-Off Solenoid Valves Driven by PWM Control (PWM 제어 고속 온-오프 전자밸브에서 발생하는 압력맥동 저감)

  • Kim D.T.;Lee S.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.8-13
    • /
    • 2005
  • This paper investigates a fast, accurate and inexpensive hydraulic motor speed control system using high speed on-off solenoid valves. In order to retain the advantages of the two position valve and obtain better performance, the valves are operated by pulse width modulation(PWM) control. PWM signal is generated from a LabWIEW program in microcomputer in order to set up various duty ratio and frequency of carrier wave in PWM signal with varying system parameters. As the results of experiments, the speed control of a hydraulic motor was successfully implemented using on-off solenoid valves. In order to attenuate the pressure ripple and speed variation due to discontinuously controlled flow through the on-off valves, a resonator hose fabricated for automobile power steering system was connected between the valve and a hydraulic motor. From experimental results obtained in the hydraulic motor system with a resonator hose, it was ascertained that the resonator hose showed excellent performances in reducing pressure ripple and motor speed variation.

  • PDF

Distributions of the velocity and pressure of the pulsatile laminar flow in a pipe with the various frequencies (주파수의 변화에 따른 원형관로내 층류맥동유동의 속도와 압력의 분포)

  • Bae, S.C.;Mo, Y.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.561-571
    • /
    • 1997
  • In this paper, the fundamental equations are developed for the pulsatile laminar flow generated by changing the oscillatory flow with $0{\leq}f{\leq}48Hz$ into a steady one with $0{\leq}Re{\leq}2500$ in a rigid circular pipe. Analytical solutions for the wave propagation factor k, the axial distributions of cross-sectional mean velocity $u_m$ and pressure p are schematically derived and confirmed experimentally. The axial distributions of centerline velocity and pressure were measured by using Pitot-static tubes and strain gauge type pressure transducers, respectively. The cross-sectional mean velocity was calculated from the centerline velocity by applying the parabolic distribution of the laminar flow and it was confirmed by using the ultrasonic flowmeter. It was found that the axial distributions of cross-sectional mean velocity and pressure agree well with theoretical ones and depend only on the Reynolds number Re and angular velocity $\omega$.

  • PDF