• Title/Summary/Keyword: 속도보정

Search Result 659, Processing Time 0.026 seconds

Real-time Depth Image Refinement using Hierarchical Joint Bilateral Filter (계층적 결합형 양방향 필터를 이용한 실시간 깊이 영상 보정 방법)

  • Shin, Dong-Won;Hoa, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.140-147
    • /
    • 2014
  • In this paper, we propose a method for real-time depth image refinement. In order to improve the quality of the depth map acquired from Kinect camera, we employ constant memory and texture memory which are suitable for a 2D image processing in the graphics processing unit (GPU). In addition, we applied the joint bilateral filter (JBF) in parallel to accelerate the overall execution. To enhance the quality of the depth image, we applied the JBF hierarchically using the compute unified device architecture (CUDA). Finally, we obtain the refined depth image. Experimental results showed that the proposed real-time depth image refinement algorithm improved the subjective quality of the depth image and the computational time was 260 frames per second.

Systematic Error Correction of Sea Surveillance Radar using AtoN Information (항로표지 정보를 이용한 해상감시레이더의 시스템 오차 보정)

  • Kim, Byung-Doo;Kim, Do-Hyeung;Lee, Byung-Gil
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.447-452
    • /
    • 2013
  • Vessel traffic system uses multiple sea surveillance radars as a primary sensor to obtain maritime traffic information like as ship's position, speed, course. The systematic errors such as the range bias and the azimuth bias of the two-dimensional radar system can significantly degrade the accuracy of the radar image and target tracking information. Therefore, the systematic errors of the radar system should be corrected precisely in order to provide the accurate target information in the vessel traffic system. In this paper, it is proposed that the method compensates the range bias and the azimuth bias using AtoN information installed at VTS coverage. The radar measurement residual error model is derived from the standard error model of two-dimensional radar measurements and the position information of AtoN, and then the linear Kalman filter is designed for estimation of the systematic errors of the radar system. The proposed method is validated via Monte-Carlo runs. Also, the convergence characteristics of the designed filter and the accuracy of the systematic error estimates according to the number of AtoN information are analyzed.

A Fast Way for Alignment Marker Detection and Position Calibration (Alignment Marker 고속 인식 및 위치 보정 방법)

  • Moon, Chang Bae;Kim, HyunSoo;Kim, HyunYong;Lee, Dongwon;Kim, Tae-Hoon;Chung, Hae;Kim, Byeong Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • The core of the machine vision that is frequently used at the pre/post-production stages is a marker alignment technology. In this paper, a method to detect the angle and position of a product at high speed by use of a unique pattern present in the marker stamped on the product, and calibrate them is proposed. In the proposed method, to determine the angle and position of a marker, the candidates of the marker are extracted by using a variation of the integral histogram, and then clustering is applied to reduce the candidates. The experimental results revealed about 5s 719ms improvement in processing time and better precision in detecting the rotation angle of a product.

EXB 하전입자빔 에너지 필터의 광학 특성

  • Jo, Bok-Rae;Heo, In-Hye;Park, In-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.608-608
    • /
    • 2013
  • 직선운동하는 하전입자의 진행방향에 수직한 평면상에 서로 직교하는 전기장과 자기장을 걸어주면, 하전입자에는 전기장에 의한 힘 $F_E$와 자기장과 속도 v에 의한 로렌츠력 $F_B=q(v{\times}B)$가 동시에 작용하게 된다. 이때 Wien 조건 $F_B=-F_E$를 만족하는 질량 $m_A$과, 에너지 $E_A$를 가지는 하전입자 A는 휘지 않고 직선운동을 계속하나, 하전입자 A와 다른 에너지 $E_B(=E_A+{\delta}E)$나 질량 $m_B$ $(=m_A+{\delta}m)$을 가지는 하전입자는 휘게 되며, 그 휘는 정도는 ${\delta}E$${\delta}m$에 비례하게 된다. 이 현상을 이용하여 다양한 종류의 에너지 또는 질량 분석기가 독일, 미국, 일본 등의 분석기기 선진국에서 개발되어 왔고, 전자현미경의 이미지 필터로도 활용되고 있으며, 통상 EXB 필터 또는 발명자의 이름을 딴 Wien 필터로 불리어지고 있다. $E{\times}B$ 필터는 일반적인 하전입자빔 렌즈와 다른 광학특성을 가진다. 예를 들면 3차 이상의 기하 수차만 가지는 일반 렌즈와는 달리 $F_B$, $F_E$ 전자기력에 의해 다양한 2차 기하 수차를 가지게 되며, 초점거리 등의 1차 광학 특성도 일반 렌즈와는 다른 경향을 보여준다. 본 발표에서는 $E{\times}B$ 필터의 전후로 각각 6극자+4극자를 조합시킨 보정기를 배치시켜 필터의 에너지 분해능의 성능을 향상시킬 수 있음을 빔 궤도 방정식을 분석적으로 계산하여 보여준다. 위 에너지 필터 구성에서 4극자는 1차 광학 특성을 조정하는 역할을 하며 6극자는 2차 수차를 줄여주는 역할을 한다. 수치해석을 통해서는 6극자+4극자를 조합시킨 보정기와 $E{\times}B$ 필터의 좀더 정확한 전극 전압 등의 제어 수치를 추출하고, 빔 궤도 방정식 분석을 통한 수차 보정 알고리즘이 유효함을 보여준다.

  • PDF

Measurement of the Void Fraction of Slug and Bubbly Flows Using Three-Ring Impedance Meters (3-ring 임피던스미터를 이용한 슬러그류 및 기포류의 기공률 측정)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • Real slug and bubbly flows were measured using a three-ring impedance meter that can efficiently measure the void fraction of two-phase flows in a tube. First, the fitting curves between the signal from the impedance meters and the void fraction were found. The impedance meter had different fitting curves for slug and bubbly flows that had the same void fraction. An impedance meter should choose one of the two fitting curves according to the flow pattern, and the flow patterns can be recognized using the measured void fraction. The velocities and sizes of the bubbles were calculated using the void fraction curves measured by two impedance meters.

Outlier Filtering and Missing Data Imputation Algorithm using TCS Data (TCS데이터를 이용한 이상치제거 및 결측보정 알고리즘 개발)

  • Do, Myung-Sik;Lee, Hyang-Mee;NamKoong, Seong
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.241-250
    • /
    • 2008
  • With the ever-growing amount of traffic, there is an increasing need for good quality travel time information. Various existing outlier filtering and missing data imputation algorithms using AVI data for interrupted and uninterrupted traffic flow have been proposed. This paper is devoted to development of an outlier filtering and missing data imputation algorithm by using Toll Collection System (TCS) data. TCS travel time data collected from August to September 2007 were employed. Travel time data from TCS are made out of records of every passing vehicle; these data have potential for providing real-time travel time information. However, the authors found that as the distance between entry tollgates and exit tollgates increases, the variance of travel time also increases. Also, time gaps appeared in the case of long distances between tollgates. Finally, the authors propose a new method for making representative values after removal of abnormal and "noise" data and after analyzing existing methods. The proposed algorithm is effective.

Ultra-Wide Band Sensor Tuning for Localization and its Application to Context-Aware Services (위치추적을 위한 UWB 센서 튜닝 및 상황인지형 서비스에의 응용)

  • Jung, Da-Un;Choo, Young-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1120-1127
    • /
    • 2008
  • This paper presents implementation of localization system using UWB (Ultra-Wide Band) sensors and its experimental results along with development of context-aware services. In order for precise measurement of position, we experimented various conditions of pitch angles, yaw angles, number of sensors, height of tags along with measuring errors at each installation. As an application examples of the location tracking system, we developed an intelligent health training management system based on context-aware technology. The system provides appropriate training schedule to a trainee by recognizing position of the trainee and current status of gymnastic equipments and note the usage of the equipment through a personal digital assistant (PDA). Error compensation on position data and moving direction of the trainee was necessary for context-aware service. Hence, we proposed an error compensation algorithm using velocity of the trainee. Experimental results showed that proposed algorithm had made error data reduce by 30% comparing with the data without applying the algorithm.

Laboratory experiment of evolution of rip current according to the duration of successive ends of breaking wave crests (연속 쇄파선 끝단 지속시간에 따른 이안류 발달 수리실험 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • The experiment of rip current at successive ends of breaking wave crests was conducted in a laboratory wave basin, and its time-varying evolution according to incident wave durations was observed by using ortho-rectified images. The experiment utilized the generation of a quasi nodal line of the honeycomb-pattern waves (i.e., intersecting wave trains) formed by out-of-phase motion of two piston-type wave makers arranged in the transverse direction, instead of the original honeycomb pattern waves which are generated when two wave trains propagate with slightly different wave directions. The particle moving distance and velocity caused by the rip current were measured by using the particle tracking technique. As a result, the rip current was survived for a while even without incident waves after its generation due to several successive ends of wave crests, and it moved the particles further out to sea.

Development of Unfolding Radial Velocity Algorithm for Dual PRF Mode of Yong-In Testbed(YIT) Radar (용인테스트베드레이다를 이용한 Dual PRF 모드의 시선속도 접힘 풀기 알고리즘 개발)

  • Kim, Hye-Ri;Suk, Mi-Kyung;Nam, Kyung-Yeub;Ko, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.521-530
    • /
    • 2016
  • Weather radar is observation equipment that transmits electromagnetic waves and receives backscattered signals from the targets. The weather radar systems of the Korea Meteorological Administration have a doppler mode that can extract the target's radial velocity. However, the radial velocity over the maximum unambiguous velocity(${\nu}_m$) for which is in a trade-off relationship with the maximum unambiguous range is folded. Therefore, a dual PRF mode of which transmits and receives signals using two different PRFs(high and low) must be used to extend the vm while maintaining the maximum unambiguous range. Using a dual PRF mode, vm can be extended to the amount of lowest common denominator of two observed vm from high and low PRF. For this extension, we have developed a velocity unfolding algorithm of which uses several criteria for classification considering observed velocity differences between high and low PRF and their error boundary. Then, correction factors are calculated for each class and are applied to unfold radial velocity. The developed algorithm was applied to the Yong-In Testbed(YIT) radar and the generated better performance of radial velocity extraction than those of the previous system.

Development of Real-Time Vision Aided Navigation Using EO/IR Image Information of Tactical Unmanned Aerial System in GPS Denied Environment (GPS 취약 환경에서 전술급 무인항공기의 주/야간 영상정보를 기반으로 한 실시간 비행체 위치 보정 시스템 개발)

  • Choi, SeungKie;Cho, ShinJe;Kang, SeungMo;Lee, KilTae;Lee, WonKeun;Jeong, GilSun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.401-410
    • /
    • 2020
  • In this study, a real-time Tactical UAS position compensation system based on image information developed to compensate for the weakness of location navigation information during GPS signal interference and jamming / spoofing attack is described. The Tactical UAS (KUS-FT) is capable of automatic flight by switching the mode from GPS/INS integrated navigation to DR/AHRS when GPS signal is lost. However, in the case of location navigation, errors accumulate over time due to dead reckoning (DR) using airspeed and azimuth which causes problems such as UAS positioning and data link antenna tracking. To minimize the accumulation of position error, based on the target data of specific region through image sensor, we developed a system that calculates the position using the UAS attitude, EO/IR (Electric Optic/Infra-Red) azimuth and elevation and numerical map data and corrects the calculated position in real-time. In addition, function and performance of the image information based real-time UAS position compensation system has been verified by ground test using GPS simulator and flight test in DR mode.