• Title/Summary/Keyword: 속도론적

Search Result 1,311, Processing Time 0.028 seconds

Adjoint 방법론을 이용한 확률론적 지하수 유동 경로 평가

  • 황용수;장태수;조영민;한경원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.81-84
    • /
    • 2001
  • 고준위 방사성 폐기물 영구처분 안전성을 평가하기 위하여 입력 자료로 처분장 주변 각 암 반에서의 지하수 유동 속도 및 유동 시간이 요구된다. 이러한 유동 속도와 시간은 대부분의 경우 단일 값이 요구되지만 고준위 방사성 처분의 경우 지하 매질의 불확실성을 고려하기 위하여 확률론적 분석이 요구된다. 지하수 유동 속도 및 시간이 확률밀도함수로 표시되기 위해서는 기존의 방법에서는 수리 해석의 입력 인자 값들을 변화시키면서 반복적인 계산을 수행하는 방법이 사용되었다. 그러나 이러한 방법론의 한계를 극복하기 위해 최근 섭동 이론을 이용한 adjoint 방법론이 사용되고 있는 바 이를 이용하여 가상 처분장에서의 지하수 유동 속도와 시간을 확률론적으로 해석하였다.

  • PDF

Spectrophotometric Investigation of Oxidation of Cefpodoxime Proxetil by Permanganate in Alkaline Medium: A Kinetic Study (알칼리성 용매에서 과망간에 의한 세프포독심 프록세틸의 산화의 분광광도법적 조사: 속도론적 연구)

  • Khan, Aftab Aslam Parwaz;Mohd, Ayaz;Bano, Shaista;Siddiqi, K. S.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • A Kinetics pathway of oxidation of Cefpodoxime Proxetil by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction showed first order kinetics in permanganate ion concentration and an order less than unity in cefpodoxime acid and alkali concentrations. Increasing ionic strength of the medium increase the rate. The oxidation reaction proceeds via an alkali-permanganate species which forms a complex with cefpodoxime acid. The latter decomposes slowly, followed by a fast reaction between a free radical of cefpodoxime acid and another molecule of permanganate to give the products. Investigations of the reaction at different temperatures allowed the determination of activation parameters with respect to the slow step of proposed mechanism and fallows first order kinetics. The proposed mechanism and the derived rate laws are consistent with the observed kinetics.

A Kinetic Study of Thermal-Oxidative Decomposition of Waste Polyurethane (폐폴리우레탄의 열적 산화분해에 대한 속도론적 연구)

  • Jun, Hyun Chul;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • The kinetics of the thermal-oxidative decomposition of waste polyurethane (PU) according to oxygen concentration has been studied using a non-isothermal thermogravimetric technique at several heating rates from 10 to $50^{\circ}C/min$. A kinetic model accounting for the effects of the oxygen concentration by the differential and integral method based on Arrhenius equation was proposed to describe the thermal-oxidative decomposition of waste PU. To obtain the information on the kinetic parameters such as activation energy, reaction order, and pre-exponential factor, the thermogravimetric analysis curves and its derivatives have been analyzed using the kinetic analysis method proposed in this work. From this work, it was found that reaction orders for oxygen concentration had a negative sign, and activation energy decreased as the oxygen concentration increased. It was also found that the kinetic parameters obtained from the integral method using the single heating rate experiments varied with heating rates. Therefore, it is thought that the differential method using the multiple heating rate experiments more effectively represents the thermal-oxidative decomposition of waste polyurethane.

Crystal Structure and Thermal Decomposition Studies on Cobalt (II) Complex of 4-Chloro-2-((E)-(Isopropylimino)methyl)phenol (4-Chloro-2-((E)-(Isopropylimino)methyl)phenol 코발트(II) 착물에 대한 결정 구조 및 열분해 연구)

  • Pu, Xiao-Hua
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.341-345
    • /
    • 2011
  • The Schiff base cobalt(II) complex, bis[4-chloro-2-((E)-(isopropylimino) methyl) phenol]cobalt(II), has been prepared and characterized by single-crystal X-ray diffraction analyses. The phenomenological, kinetic and mechanistic aspects of the cobalt (II) complex have been studied by TG/DTG techniques. On the basis of the experimental data, the kinetic parameters such as activation energy, pre-exponential factor and entropy of activation were computed, and then the most probable mechanism function was estimated as $g({\alpha})={\alpha}^2$ 2. Hence the rate controlling process at all stages of decomposition is onedimensional diffusion (Parabolic model).

Thermal Decomposition Kinetics of ZPP as a Primary Charge of Initiators (착화기용 ZPP의 열분해 특성)

  • Kim, Junhyung;Seo, Taeseok;Ko, Seungwon;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • The thermal decomposition characteristics of the ZPP(Zirconium/Potassium perchlorate), widely used as a primary charge of initiators, were investigated by differential scanning calorimetry(DSC). The DSC results with different heating rates were elaborated with AKTS-Thermokinetics software for the determination of the kinetic parameters of the thermal decomposition of ZPP. There was good agreement between the experimental and the simulation curves, based on the determined kinetic parameters, which indicates the validity of the kinetic description of the thermal decomposition process of ZPP.

Effect of Solution Temperature and Bath Concentration on the Kinetics with Dissolution Reaction of Zinc-Ferrite (Zinc-ferrite의 용해 속도론에 미치는 황산 용액의 온도와 농도의 영향)

  • Oh Iee-Sik;Kim Chun-Jo
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.30-37
    • /
    • 2003
  • A kinetics study on the dissolution reaction of zinc-ferrite has been made with aqueous sulfuric acid in various temperature and concentration. Fraction reacted(R) and apparent rate constant(K) increased with increasing temperature and concentration of sulfuric acid solution. The rate of dissolution is shown by $1-(1-K)^{1/3}=Kt$ for the initial stage of the reaction in aqueous sulfuric acid, where K is apparent rate constant, R is fraction reacted and t is reaction time, respectively. Activation energy associated with reaction was determined to be 16.3 kcal/mole. The dissolution of zinc-ferrite in sulfuric acid solution is dissolved by sto-ichiometric composition, but Fe and Zn did not dissolved, respectively.