• Title/Summary/Keyword: 소형 무인항공기

Search Result 126, Processing Time 0.023 seconds

Registration of Aerial Video Frames for Generating Image Map (영상지도제작을 위한 항공 비디오 영상 등록)

  • Kim, Seong-Sam;Shin, Sung-Woong;Kim, Eui-Myoung;Yoo, Hwan-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.279-287
    • /
    • 2007
  • The increased availability of portable, low-cost, high resolution video equipments have resulted in a rapid growth of the applications for video sequences. These video devices can be mounted in handhold unit, mobile unit and airborne platforms like maned or unmaned helicopter, plane, airship, etc. This paper describes the feasibility fur generating image map from the experimental results we designed to track the interested points extracted by KLT operator in the neighboring frames and implement image matching for each frames taken from UAV (Unmaned Aerial Vehicle). In the image registration for neighbourhood frames of aerial video, the results demonstrate the successful rate of matching slightly decreases as the drift between frames increases, and also that the stable photographing is more important matching condition than the pixel shift.

A Study of the C-band Ground-based Radio Navigation System for UAM Cooperative Navigation (UAM 복합 항법을 위한 C 밴드 지상기반 전파 항법 시스템 연구)

  • Kyung-Soon Lee;Yong-Un Cho;Min-Jung Kim;Kyung Heon, Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.374-381
    • /
    • 2023
  • This study focuses on the implementation of C-band radio navigation in the 5.03 ~ 5.15 GHz terrestrial band to cooperate with GNSS navigation mainly used in existing UAMs. This is one of the navigation technologies that can fully satisfy the requirements of Title 14 of CFR-135.165. According to the FAA, the use of two or more independent navigation sources for aircraft is proposed for aircraft. This study proceeded with the link budget derivation through radio wave propagation path loss analysis, and antenna shape design for miniaturized Doppler VOR, and DME design with enhanced positional distance resolution compared to conventional aircraft. The ground navigation system which is the result of this study, consists of a VOR/DME ground station and a terminal that can be mounted on UAM. Significant performance was confirmed through the production and testing of each prototype.

Development of a Comprehensive Performance Test Facility for Small Millimeter-wave Tracking Radar (소형 추적 레이다용 종합성능시험 시설 개발)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The small tracking radar targets the target in a real-time, fast-moving, fast-moving target against aircraft with a large RCS that is maneuvering at low speed and a small RCS aircraft maneuvering at high speed (fighters, drones, helicopters, etc.) It is a pulsed radar that detects and tracks. Performing a performance test on a tracking radar in a real environment is expensive, and it is difficult to quantitatively measure performance in a real environment. Describes the composition of the laboratory environment's comprehensive performance test facility and the main requirements and implementation of each configuration.Anechoic chambers to simulate the room environment, simulation target generator to simulate the signal of the room target, target It is composed of a horn antenna driving device to simulate the movement of a vehicle and a Flight Motion Simulatior (FMS) to simulate the flight environment of a tracking radar, and each design and implementation has been described.

Aerodynamic Design and Performance Prediction of Highly-Loaded 1 Stage Axial Compressor (고부하 1단 축류형 압축기 공력 설계 및 성능 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.101-104
    • /
    • 2010
  • Recently, needs for UAVs and small aircraft and small turbo jet or turbo fan engines for these air-crafts are increasing. Size and weight are the two main restrictions in small air-crafts such as UAV or VLJ propulsion system applications. Therefore, high power density is required in small size and designers come up with unconventional solutions in the design of small aero gas turbine engines. One of the solutions is the usage of highly loaded axial compressors. This paper introduces an aerodynamic design method of a highly loaded axial compressor and its review process. Numerical simulation has been carried out to assess the aerodynamic performance of the compressor.

  • PDF

Study on Flight Test of Small Solar-Powered UAV (소형 태양광 무인 항공기의 비행실험에 관한 연구)

  • An, Il-Young;Bae, Jae-Sung;Park, Sang-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.313-318
    • /
    • 2012
  • In the present study, the preliminary study on a small solar-powered RC airplane are performed for the development of a long-endurance solar-powered UAV. Solar energy enables the solar-powered UAV to fly longer or eternally. The solar-powered UAV transfers the solar energy to electric energy and this energy is used for the flight and the battery charge. To increase the flying time, the efficiency of the solar-cell power system must be increased and the required power for flight must be minimized. Hence, the system integration including solar cell and controller, the power system design, and the aerodynamic and structural designs of the UAV is very important. The present study have performed the design, manufacture, and flight test of the small solar-powered UAV for the preliminary study of the long-endurance solar-powered UAV. From this study, the system integration technology of the solar-powered UAV design is established, and the possibility and the issue points for the development of the long-endurance solar-powered UAV are discussed.

  • PDF

Neural Network-based FMCW Radar System for Detecting a Drone (소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템)

  • Jang, Myeongjae;Kim, Soontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

A Study of Certification of Lightning Indirect Effects on Cable Harness in Personal Air Vehicles (PAV 케이블 하네스에 대한 낙뢰 간접 영향성 인증 기법에 관한 연구)

  • Jo, Jae-Hyeon;Kim, Yun-Gon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.251-262
    • /
    • 2021
  • The airworthiness certification of lightning indirect effects becomes an important issue in personal air vehicles (PAVs), which are being actively developed around the world. PAVs are very vulnerable to lightning strikes, because of miniaturization, use of the electric engines, composite materials, and application of unmanned navigation systems. In this study, we first examined various steps of certifications for lightning indirect effects shown in AC 20 136B issued by the Federal Aviation Administration (FAA). We then applied certification guidelines for equipment transient design level listed in RTCA DO 160G Section 22 to PAVs and investigated lightning transient environments inside the PAVs. We also analyzed the aircraft level tests specified in SAE ARP 5416A by using electromagnetic computational analysis software EMA3D. Finally, we analyzed the actual transient level for PAVs and derived the data necessary for conformity certification.

Initial Cycle Design of a 100hp class Turboshaft Engine with a Recuperator (레큐퍼레이터 장착형 100마력급 터보샤프트엔진의 초기 싸이클 설계)

  • Jun, Yongmin;Kim, Jaehwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.889-891
    • /
    • 2017
  • Usually piston or rotary engines are installed at UAV's under 100 kg payload class. Those engine are less expensive and easy to get, but they require higher operating and maintenance costs due to shorter life and unique fuel usage. They are also too noisy to operate in urban area and have too strong vibration to carry sophisticated payloads. On the contrary, a gas turbine engine has drawbacks like higher specific fuel consumption and weight to power ratio, even it has many operating and maintenance benefits. This study aims to design a small turboshaft engine with a recuperator to overcome those demerits. A tilt rotor UAV(TR-60) developed by KARI was chosen as an imaginary target aircraft, and engine power and size were derived from it. This paper describes engine requirements, design process, and initial reference point cycle design.

  • PDF

Implementation of Intra-Partition Communication in Layered ARINC 653 for Drone Flight-Control Program (드론 비행제어 프로그램을 위한 계층적 ARINC 653의 파티션 내 통신 구현)

  • Park, Joo-Kwang;Kim, Jooho;Jo, Hyun-Chul;Jin, Hyun-Wook
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.649-657
    • /
    • 2017
  • As the type and purpose of drones become diverse and the number of additional functions is increasing, the role of the corresponding software has increased. Through partitioning and an efficient solving of SWaP(size, weight and power) problems, ARINC 653 can provide reliable software reuse and consolidation regarding avionic systems. ARINC 653 can be more effectively applied to drones, a small unmanned aerial vehicle, in addition to its application with large-scale aircraft. In this paper, to exploit ARINC 653 for a drone flight-control program, an intra-partition communication system is implemented through an extension of the layered ARINC 653 and applied to a real drone system. The experiment results show that the overheads of the intra-partition communication are low, while the resources that are assigned to the drone flight-control program are guaranteed through the partitioning.

Image Georeferencing using AT without GCPs for a UAV-based Low-Cost Multisensor System (UAV 기반 저가 멀티센서시스템을 위한 무기준점 AT를 이용한 영상의 Georeferencing)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.249-260
    • /
    • 2009
  • The georeferencing accuracy of the sensory data acquired by an aerial monitoring system heavily depends on the performance of the GPS/IMU mounted on the system. The employment of a high performance but expensive GPS/IMU unit causes to increase the developmental cost of the overall system. In this study, we simulate the images and GPS/IMU data acquired by an UAV-based aerial monitoring system using an inexpensive integrated GPS/IMU of a MEMS type, and perform the image georeferencing by applying the aerial triangulation to the simulated sensory data without any GCP. The image georeferencing results are then analyzed to assess the accuracy of the estimated exterior orientation parameters of the images and ground points coordinates. The analysis indicates that the RMSEs of the exterior orientation parameters and ground point coordinates is significantly decreased by about 90% in comparison with those resulted from the direct georeferencing without the aerial triangulation. From this study, we confirmed the high possibility to develop a low-cost real-time aerial monitoring system.