• Title/Summary/Keyword: 소프트웨어 학습모델

Search Result 619, Processing Time 0.025 seconds

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

From a Defecation Alert System to a Smart Bottle: Understanding Lean Startup Methodology from the Case of Startup "L" (배변알리미에서 스마트바틀 출시까지: 스타트업 L사 사례로 본 린 스타트업 실천방안)

  • Sunkyung Park;Ju-Young Park
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.91-107
    • /
    • 2023
  • Lean startup is a concept that combines the words "lean," meaning an efficient way of running a business, and "startup," meaning a new business. It is often cited as a strategy for minimizing failure in early-stage businesses, especially in software-based startups. By scrutinizing the case of a startup L, this study suggests that lean startup methodology(LSM) can be useful for hardware and manufacturing companies and identifies ways for early startups to successfully implement LSM. To this end, the study explained the core of LSM including the concepts of hypothesis-driven approach, BML feedback loop, minimum viable product(MVP), and pivot. Five criteria to evaluate the successful implementation of LSM were derived from the core concepts and applied to evaluate the case of startup L . The early startup L pivoted its main business model from defecation alert system for patients with limited mobility to one for infants or toddlers, and finally to a smart bottle for infants. In developing the former two products, analyzed from LSM's perspective, company L neither established a specific customer value proposition for its startup idea and nor verified it through MVP experiment, thus failed to create a BML feedback loop. However, through two rounds of pivots, startup L discovered new target customers and customer needs, and was able to establish a successful business model by repeatedly experimenting with MVPs with minimal effort and time. In other words, Company L's case shows that it is essential to go through the customer-market validation stage at the beginning of the business, and that it should be done through an MVP method that does not waste the startup's time and resources. It also shows that it is necessary to abandon and pivot a product or service that customers do not want, even if it is technically superior and functionally complete. Lastly, the study proves that the lean startup methodology is not limited to the software industry, but can also be applied to technology-based hardware industry. The findings of this study can be used as guidelines and methodologies for early-stage companies to minimize failures and to accelerate the process of establishing a business model, scaling up, and going global.

  • PDF

A Study for Model Curricula Development, in GIS(Geographic Information Science) (GIS 교육과정 개발에 관한 연구)

  • 성효현
    • Spatial Information Research
    • /
    • v.1 no.1
    • /
    • pp.73-87
    • /
    • 1993
  • This paper reviews the topic of GIS, the academic setting of GIS, GIS model curricula and the possibility GIS education in Korea. The topics which might be included in a science of geographic information consist of data collection and measurement, data capture, spatial statistics, data modeling and theories of spatial data, data structures, algorithms and processes, display, analytical tools, institutional, managerial and ethical issues. The problems in teaching a course on GIS in higher education are reviewed. Because of their technological, integrative, and rapidly changing nature, GIS pose major challenges to their education system which it is ill equipped to meet. In higher education a number of initiatives have been taken to provide education about and training with, GIS. The possible GIS curricula are suggested. These curricula are divided into 3 major sections, relating GIS context, technical issues and application issues. The prospects of GIS appears lo depend largely upon the future cooperation of academia, government, and industry

  • PDF

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.

A Dynamic exploration of Constructivism Research based on Citespace Software in the Filed of Education (교육학 분야에서 CiteSpace에 기초한 구성주의 연구 동향 탐색)

  • Jiang, Yuxin;Song, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.576-584
    • /
    • 2022
  • As an important branch of cognitive psychology, "constructivism" is called a "revolution" in contemporary educational psychology, which has a profound influence on the field of pedagogy and psychology. Based on "WOS" database, this study selects "WOS Core database" and "KCI database", uses CiteSpace visualization software as analysis tool, and makes knowledge map analysis on the research literature of "constructivism" in the field of education in recent 35 years. Analysis directions include annual analysis, network connection analysis by country(region) branch, author, institution or University, and keyword analysis. The purpose of the analysis is to grasp the subject areas, research hotspots and future trends of the research on constructivism, and to provide theoretical reference for the research on constructivism. There are three conclusions from the study. 1. Studies on the subject of constructivism have continued from the 1980s to the present. It is now in a period of steady development. 2. Countries concerned with the subject of constructivism mainly include the United States, Canada, Britain, Australia and the Netherlands. The main research institutions and authors are mainly located in these countries. 3. Currently, the keywords constructivism research focus on the clusters of "instructional strategies", and the development of science and technology is affecting individual learning. In the future, instructional strategies will become the focus of structural constructivism research. With the development of instructional technology, it is necessary to conduct research related to the development of new teaching models.

Development of Intelligent OCR Technology to Utilize Document Image Data (문서 이미지 데이터 활용을 위한 지능형 OCR 기술 개발)

  • Kim, Sangjun;Yu, Donghui;Hwang, Soyoung;Kim, Minho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.212-215
    • /
    • 2022
  • In the era of so-called digital transformation today, the need for the construction and utilization of big data in various fields has increased. Today, a lot of data is produced and stored in a digital device and media-friendly manner, but the production and storage of data for a long time in the past has been dominated by print books. Therefore, the need for Optical Character Recognition (OCR) technology to utilize the vast amount of print books accumulated for a long time as big data was also required in line with the need for big data. In this study, a system for digitizing the structure and content of a document object inside a scanned book image is proposed. The proposal system largely consists of the following three steps. 1) Recognition of area information by document objects (table, equation, picture, text body) in scanned book image. 2) OCR processing for each area of the text body-table-formula module according to recognized document object areas. 3) The processed document informations gather up and returned to the JSON format. The model proposed in this study uses an open-source project that additional learning and improvement. Intelligent OCR proposed as a system in this study showed commercial OCR software-level performance in processing four types of document objects(table, equation, image, text body).

  • PDF

Development and application of SW·AI education program for Digital Sprout Camp

  • Jong Hun Kim;Jae Guk Shin;Seung Bo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • To foster the core talents of the future, the development of diverse and substantial SW·AI education programs is required, and a systematic system that can assist public education in SW and AI must be established. In this study, we develop and combine SW·AI education modules to construct a SW and AI education program applicable to public education. We also establish a systematic education system and provide sustainable SW·AI education to elementary, middle, and high school students through 'Job's Garage Camp' based on various sharing platforms. By creating a sustainable follow-up educational environment, students are encouraged to continue their self-directed learning of SW and AI. As a result of conducting a pre-post survey of students participating in the 'Job's Garage Camp', the post-survey values improved compared to the pre-survey values in all areas of 'interest', 'understanding and confidence', and 'career aspirations'. Based on these results, it can be confirmed that students had a universal positive perception and influence on SW and AI. Therefore, if the operation case of 'Job's Garage Camp' is improved and expanded, it can be presented as a standard model applicable to other SW and AI education programs in the future.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.