• 제목/요약/키워드: 소프트웨어 집약 시스템

검색결과 23건 처리시간 0.018초

스마트 시설환경 실시간 시뮬레이션을 위한 하드웨어 가속 기술 분석 (A Benchmark of Hardware Acceleration Technology for Real-time Simulation in Smart Farm (CUDA vs OpenCL))

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.160-160
    • /
    • 2017
  • 자동화 기술을 통한 한국형 스마트팜의 발전이 비약적으로 이루어지고 있는 가운데 무인화를 위한 지능적인 스마트 시설환경 관찰 및 분석에 대한 요구가 점점 증가 하고 있다. 스마트 시설환경에서 취득 가능한 시계열 데이터는 온도, 습도, 조도, CO2, 토양 수분, 환기량 등 다양하다. 시스템의 경계가 명확함에도 해당 속성의 특성상 타임도메인과 공간도메인 상에서 정확한 추정 또는 예측이 난해하다. 시설 환경에 접목이 증가하고 있는 지능형 관리 기술 구현을 위해선 시계열 공간 데이터에 대한 신속하고 정확한 정량화 기술이 필수적이라 할 수 있다. 이러한 기술적인 요구사항을 해결하고자 시도되는 다양한 방법 중에서 공간 분해능 향상을 위한 다지점 계측 메트릭스를 실험적으로 구성하였다. $50m{\times}100m$의 단면적인 연동 딸기 온실을 대상으로 $3{\times}3{\times}3$의 3차원 환경 인자 계측 매트릭스를 설치하였다. 1 Hz의 주기로 4가지 환경인자(온도, 습도, 조도, CO2)를 계측하였으며, 계측 하는 시점과 동시에 병렬적으로 공간통계법을 이용하여 미지의 지점에 대한 환경 인자들을 실시간으로 추정하였다. 선행적으로 50 cm 공간 분해능에 대응하기 위하여 Kriging interpolation법을 횡단면에 대하여 분석한 후 다시 종단면에 대하여 분석하였다. 3 Ghz에 해당하는 연산 능력을 보유한 컴퓨터에서 1초 동안 획득한 데이터에 대한 분석을 마치는데 소요되는 시간이 15초 내외로 나타났다. 이는 해당 알고리즘의 매우 높은 시간 복잡도(Order of $O=O^3$)에 기인하는 것으로 다양한 시설 환경의 관리 방법론에 적절히 대응하기에 한계가 있다 할 수 있다. 실시간으로 시간 복잡도가 높은 연산을 수행하기 위한 기술적인 과제를 해결하고자, 근래에 관심이 증가하고 있는 NVIDIA 사에서 제공하는 CUDA 엔진과 Apple사의 제안을 시작으로 하여 공개 소프트웨어 개발 컨소시엄인 크로노스 그룹에서 제공하는 OpenCL 엔진을 비교 분석하였다. CUDA 엔진은 GPU(Graphics Processing Unit)에서 정보 분석 프로그램의 연산 집약적인 부분만을 담당하여 신속한 결과를 산출할 수 있는 라이브러리이며 해당 하드웨어를 구비하였을 때 사용이 가능하다. 반면, OpenCL은 CUDA 엔진이 특정 하드웨어에서 구동이 되는 한계를 극복하고자 하드웨어에 비의존적인 라이브러리를 제공하는 것이 다르며 클러스터링 기술과 연계를 통해 낮은 하드웨어 성능으로 인한 단점을 극복하고자 하였다. 본 연구에서는 CUDA 8.0(https://developer.nvidia.com/cuda-downloads)버전과 Pascal Titan X(NVIDIA, CA, USA)를 사용한 방법과 OpenCL 1.2(https://www.khronos.org/opencl/)버전과 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea)를 사용한 방법을 비교 분석하였다. 50 cm의 공간 분해능에 대응하기 위한 4차원 행렬($100{\times}200{\times}5{\times}4$)에 대하여 정수 지수화를 위한 Quantization을 거쳐 CUDA 엔진과 OpenCL 엔진을 적용한 비교한 결과, CUDA 엔진은 1초 내외, OpenCL 엔진의 경우 5초 내외의 연산 속도를 보였다. CUDA 엔진의 경우 비용측면에서 약 10배, 전력 소모 측면에서 20배 이상 소요되었다. 따라서 우선적으로 OpenCL 엔진 기반 하드웨어 가속 기술 최적화 연구를 통해 스마트 시설환경 실시간 시뮬레이션 기술 도입을 위한 기술적 과제를 풀어갈 것이다.

  • PDF

데이터 불균형과 측정 오차를 고려한 생분해성 섬유 인장 강신도 예측 모델 개발 (The Development of Biodegradable Fiber Tensile Tenacity and Elongation Prediction Model Considering Data Imbalance and Measurement Error)

  • 박세찬;김덕엽;서강복;이우진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권12호
    • /
    • pp.489-498
    • /
    • 2022
  • 최근 노동 집약적인 성격의 섬유 산업에서는 인공지능을 통해 섬유 방사 공정에 들어가는 비용을 줄이고 품질을 최적화하려고 시도 하고 있다. 그러나 섬유 방사 공정은 데이터 수집에 필요한 비용이 크고 체계적인 데이터 수집 및 처리 시스템이 부족하여 축적된 데이터양이 적다. 또 방사 목적에 따라 특정한 변수에만 변화를 준 데이터만을 우선으로 수집하여 데이터 불균형이 발생하며, 물성 측정 환경의 차이로 인해 동일 방사 조건에서 수집된 샘플 간에도 오차가 존재한다. 이러한 데이터 특성들을 고려하지 않고 인공지능 모델에 활용할 경우 과적합과 성능 저하 등의 문제가 발생할 수 있다. 따라서 본 논문에서는 방사 공정 데이터 특성을 고려한 이상치 처리 기법과 데이터 증강 기법을 제안한다. 그리고 이를 기존 이상치 처리 기법 및 데이터 증강 기법과 비교하여 제안한 기법이 방사 공정 데이터에 더 적합함을 보인다. 또 원본 데이터와 제안한 기법들로 처리된 데이터를 다양한 모델에 적용하여 비교함을 통해 제안한 기법들을 사용한 모델들이 그렇지 않은 모델들에 비해 인장 강신도 예측 모델의 성능이 개선됨을 보인다.

M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과 (Economic Impact of HEMOS-Cloud Services for M&S Support)

  • 정대용;서동우;황재순;박성욱;김명일
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권10호
    • /
    • pp.261-268
    • /
    • 2021
  • 클라우드 컴퓨팅은 서비스 사용자 요구에 따라 컴퓨팅 자원을 임대하여 사용하는 컴퓨팅 패러다임이다. 클라우드 컴퓨팅에서 컴퓨팅 자원은 사용자의 서비스 수요에 따라 컴퓨팅 자원을 확장 또는 축소가 가능하여 전체 서비스 비용 절감 효과를 가질 수 있다. 그리고, M&S (Modeling and Simulation) 기술은 컴퓨팅 자원과 CAE 소프트웨어를 통해 엔지니어링 분석 작업 결과를 얻어, 실제 실험 결과가 없이 제품의 상태를 시뮬레이션을 수행하여 분석하는 방법이다. M&S 기술은 FEA(Finite Element Analysis), CFD(Computational Fluid Dynamics), MBD(Multibody Dynamics) 및 최적화 분야에서 활용된다. M&S 통한 작업 절차는 전처리, 해석, 후처리 단계로 구분된다. CAE 소트프웨어를 통한 3D 모델링 작업인 전/후처리는 GPU 연산이 집약적이며, 3D 모델 해석은 CPU 또는 GPU 연산이 요구된다. 일반적인 개인 데스크톱에서 복잡한 3D 모델을 해석하는 시간이 많이 소요된다. 결과적으로, M&S를 원활하게 수행하기 위해서는 고성능 컴퓨팅 자원이 요구된다. 이 문제를 해결하기 위해 우리는 통합 클라우드 및 클러스터 컴퓨팅 환경인 HEMOS-Cloud 서비스를 제안한다. 제안한 클라우드 기반 방식에서는 M&S에 필요한 전/후처리 및 솔버 작업을 원활하게 수행할 수 있도록 구성했다. 이 시스템에서 전/후처리는 VDI(Virtual Desktop Infrastructure)에서 수행되고 해석은 클러스터 환경에서 수행된다. 각 용도에 맞게 서로 다른 환경에서 분리하여 컴퓨팅 자원 간에 간섭을 최소화했다. HEMOS-Cloud 서비스는 기업 또는 학교에서 M&S의 경험이 필요로 하는 사용자에게 CAE 소프트웨어와 컴퓨팅 자원을 제공한다. 본 논문에서는 HEMOS-Cloud 서비스의 경제적 파급효과를 산업연관분석을 활용하여 분석했다. 전문가의 의견을 반영하여 조정된 계수를 통한 분석 결과는 생산유발효과 74억원, 부가가치유발효과 41억원, 취업자유발효과 10억원당 50명으로 분석되었다.