• 제목/요약/키워드: 소프트웨어 매트릭스

검색결과 39건 처리시간 0.025초

딥러닝 기술을 적용한 그래프 알고리즘 성능 연구 (Research on Performance of Graph Algorithm using Deep Learning Technology)

  • 노기섭
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.471-476
    • /
    • 2024
  • 다양한 스마트 기기 및 컴퓨팅 디바이스의 보급에 따라 빅데이터 생성이 광범위하게 일어나고 있다. 기계학습은 데이터의 패턴을 학습하여 추론을 수행하는 알고리즘이다. 다양한 기계학습 알고리즘 중에서 주목을 받는 알고리즘은 신경망 기반의 딥러닝 학습이다. 딥러닝은 다양한 응용이 발표되면서 빠른 성능 향상을 달성하고 있다. 최근 딥러닝 알고리즘 중에서 그래프 구조를 활용하여 데이터를 분석하려는 시도가 증가하고 있다. 본 연구에서는 그래프 구조를 활용하여 딥러닝 네트워크에 전달하기 위한 그래프 생성 방법을 제시한다. 본 논문은 그래프 생성 과정에서 노드의 속성과 간선의 가중치를 일반화하고 행렬화 과정을 제시하여 딥러닝 입력에 필요한 구조로 전환하는 방법을 제시한다. 그래프 생성 과정에서 속성과 가중치 정보를 보전할 수 있는 선형변환 매트릭스 적용 방법을 제시한다. 마지막으로 일반 그래프의 딥러닝 입력 구조를 제시하고 성능 분석을 위한 접근법을 제시한다.

QoS(Quality of Service) 측정 모델을 참조한 스마트헬스케어서비스 소프트웨어 품질만족도 평가체계 (A Study of Smart Healthcare Services Software Quality Satisfaction Rating System based on QoS(Quality of Service) Measurement Model)

  • 노시춘;송은지
    • 한국정보통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.149-154
    • /
    • 2014
  • 품질은 양(Quantity) 이나 질(Quality)로 관찰하여 수치로 측정 할 수 있는 서비스 특성이다. QoS란 트래픽이 통신망에서 전달되면서 예측 가능하면서 동시에 최소한으로 보장되어야할 서비스 요구사항이다. 스마트 의료정보시스템 개발에는 스마트 환경에서 기능적 요구사항과 품질을 만족시켜야 할 목표가 존재한다. 스마트 의료정보시스템의 기능도메인은 Patient Module 도메인, 스마트 환경 도메인, RFID Tag와 리더기 간 동작 도메인, Homecare Station 도메인, Clinical Station 도메인으로 구성된다. 본 연구는 각 도메인에서 수행되는 유헬스 서비스 스마트 기능 품질만족도 평가 방법론을 제시한다. QoS 측정기준은 의료정보의 기능적 요구 사항과 품질 요구사항 별로 구분된다. 품질측정 파라메타는 기능적 요구사항 6개 항목과 20개 세부항목이며 품질 요구사항은 5개항목과 20개 세부항목으로 구성된다. 품질평가를 위해 본 연구는 한국형 스마트 의료 정보 품질평가 매트릭스로 2-factor 평가 방법을 제시한다. 본 연구의 전체적인 품질평가 프레임워크는 모든 스마트 의료정보시스템 개발 시 고려해야 할 의료정보 특유의 품질에 대한 기준을 체계화하고 품질평가 절차를 모델화 한 것이다.

협업 사이버물리시스템의 결함 치명도 분석을 통한 안전성 확보 (Securing Safety in Collaborative Cyber-Physical Systems Through Fault Criticality Analysis)

  • ;;홍장의
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권8호
    • /
    • pp.287-300
    • /
    • 2021
  • 협업 사이버-물리 시스템(Collaborative Cyber-Physical Systems, CCPS)은 물리 세계와 사이버 세계가 밀접하게 결합하여 공동의 목표를 달성하기 위하여 협업을 수행하는 시스템이다. 한편, 단일 사이버-물리 시스템(Cyber-Physical System)의 경우에는 ISO 26262 또는 IEC 61508과 같은 표준을 따르거나 다양한 위험 분석 기법을 적용함으로써 그 안전을 확보할 수 있다. 그러나 CCPS에서는 협업을 수행중인 한 CPS의 결함으로 인하여 다른 협업 중인 CPS에게 수많은 결함을 발생시키기 때문에 안전의 확보가 매우 어렵다. 본 논문에서는 이러한 CCPS의 위험을 분석하여 안전을 확보하기 위해 복합적인 위험 분석과 위험 분석 산출물 사이의 관계를 기반으로 하는 위험 치명도 매트릭스(Fault Criticality Matrix, FCM)를 제시한다. FCM에서는 결함, 결함의 치명도, 안전 가드와 안전 가드의 발생 확률, 결함의 영향 및 순위를 나열하여 분석한다. 안전 엔지니어는 이를 통해 시스템의 설계 단계에서 각 결함의 치명도와 영향을 분석하고, 설계된 안전 가드를 통해 식별된 고장을 효과적으로 관리하고 제어함으로써 안전한 CPS를 개발할 수 있다. 제시된 방법의 유용성을 확인하기 위해 CCPS의 대표적 예인 군집주행에 대하여 사례 연구를 수행하였다. 본 연구에서 개발된 도구를 사용하여 군집주행 시스템에 FCM을 적용함으로써 상세한 결함 치명도 분석을 수행하였고, 분석 결과는 적합성과 효과성 관점에서 점검되었다. 또한 군집 주행에 대한 시뮬레이션 수행을 통해 FCM을 사용하여 결함 치명도를 분석한 군집주행 시스템이 발견된 모든 결함을 완화시켜 충돌 가능성을 크게 낮추었음을 보였다.

블록기반 프로그래밍 코드의 수준 및 취약수준 측정방안 (A Method for Measuring and Evaluating for Block-based Programming Code)

  • 손원성
    • 정보교육학회논문지
    • /
    • 제20권3호
    • /
    • pp.293-302
    • /
    • 2016
  • 최근 SW 교육의 관심이 증대되고 프로그래밍 교육이 대학 학부교육의 주요한 부분으로 인식되고 있다. 특히 프로그래밍 입문 도구로서 블록 기반 프로그래밍 도구가 널리 사용되고 있으며 프로그래밍 입문자에게 기존 프로그래밍 언어와 비교하여 매우 다양한 장점들을 제공하고 있다. 한편 블록기반 프로그래밍 도구로 작성된 코드가 스크립트 언어일 경우 스크립트의 품질과 수준을 정교하게 측정하기 위해서는 상당한 노력을 기울어야 한다. 따라서 블록기반 프로그래밍 코드의 품질측정과 관련된 대부분의 연구는 단순히 프로그래밍 개념과 연관된 블록의 사용개수를 정량화하여 스크립트의 수준을 평가하고 있다. 그 결과 기존연구의 기법으로는 취약수준을 측정하거나 스크립트에 명시되지 않는 프로그래밍 개념에 대한 평가가 어렵다. 본 연구는 블록기반 프로그래밍 스크립트의 품질측정 및 취약수준 분석이 가능한 프레임워크를 제안한다. 프레임워크에서는 블록기반 프로그래밍 언어들이 내포한 다양한 프로그래밍 개념을 구조화한 평가 매트릭스를 구축하고 동 지표를 기반으로 스크립트의 품질 측정과 항목별 취약점 개선에 따른 수준향상 모델을 제안함으로써 개인별 수준진단 및 향후 개선 가능한 목표수준을 예측할 수 있도록 하였다.

스마트 시설환경 실시간 시뮬레이션을 위한 하드웨어 가속 기술 분석 (A Benchmark of Hardware Acceleration Technology for Real-time Simulation in Smart Farm (CUDA vs OpenCL))

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.160-160
    • /
    • 2017
  • 자동화 기술을 통한 한국형 스마트팜의 발전이 비약적으로 이루어지고 있는 가운데 무인화를 위한 지능적인 스마트 시설환경 관찰 및 분석에 대한 요구가 점점 증가 하고 있다. 스마트 시설환경에서 취득 가능한 시계열 데이터는 온도, 습도, 조도, CO2, 토양 수분, 환기량 등 다양하다. 시스템의 경계가 명확함에도 해당 속성의 특성상 타임도메인과 공간도메인 상에서 정확한 추정 또는 예측이 난해하다. 시설 환경에 접목이 증가하고 있는 지능형 관리 기술 구현을 위해선 시계열 공간 데이터에 대한 신속하고 정확한 정량화 기술이 필수적이라 할 수 있다. 이러한 기술적인 요구사항을 해결하고자 시도되는 다양한 방법 중에서 공간 분해능 향상을 위한 다지점 계측 메트릭스를 실험적으로 구성하였다. $50m{\times}100m$의 단면적인 연동 딸기 온실을 대상으로 $3{\times}3{\times}3$의 3차원 환경 인자 계측 매트릭스를 설치하였다. 1 Hz의 주기로 4가지 환경인자(온도, 습도, 조도, CO2)를 계측하였으며, 계측 하는 시점과 동시에 병렬적으로 공간통계법을 이용하여 미지의 지점에 대한 환경 인자들을 실시간으로 추정하였다. 선행적으로 50 cm 공간 분해능에 대응하기 위하여 Kriging interpolation법을 횡단면에 대하여 분석한 후 다시 종단면에 대하여 분석하였다. 3 Ghz에 해당하는 연산 능력을 보유한 컴퓨터에서 1초 동안 획득한 데이터에 대한 분석을 마치는데 소요되는 시간이 15초 내외로 나타났다. 이는 해당 알고리즘의 매우 높은 시간 복잡도(Order of $O=O^3$)에 기인하는 것으로 다양한 시설 환경의 관리 방법론에 적절히 대응하기에 한계가 있다 할 수 있다. 실시간으로 시간 복잡도가 높은 연산을 수행하기 위한 기술적인 과제를 해결하고자, 근래에 관심이 증가하고 있는 NVIDIA 사에서 제공하는 CUDA 엔진과 Apple사의 제안을 시작으로 하여 공개 소프트웨어 개발 컨소시엄인 크로노스 그룹에서 제공하는 OpenCL 엔진을 비교 분석하였다. CUDA 엔진은 GPU(Graphics Processing Unit)에서 정보 분석 프로그램의 연산 집약적인 부분만을 담당하여 신속한 결과를 산출할 수 있는 라이브러리이며 해당 하드웨어를 구비하였을 때 사용이 가능하다. 반면, OpenCL은 CUDA 엔진이 특정 하드웨어에서 구동이 되는 한계를 극복하고자 하드웨어에 비의존적인 라이브러리를 제공하는 것이 다르며 클러스터링 기술과 연계를 통해 낮은 하드웨어 성능으로 인한 단점을 극복하고자 하였다. 본 연구에서는 CUDA 8.0(https://developer.nvidia.com/cuda-downloads)버전과 Pascal Titan X(NVIDIA, CA, USA)를 사용한 방법과 OpenCL 1.2(https://www.khronos.org/opencl/)버전과 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea)를 사용한 방법을 비교 분석하였다. 50 cm의 공간 분해능에 대응하기 위한 4차원 행렬($100{\times}200{\times}5{\times}4$)에 대하여 정수 지수화를 위한 Quantization을 거쳐 CUDA 엔진과 OpenCL 엔진을 적용한 비교한 결과, CUDA 엔진은 1초 내외, OpenCL 엔진의 경우 5초 내외의 연산 속도를 보였다. CUDA 엔진의 경우 비용측면에서 약 10배, 전력 소모 측면에서 20배 이상 소요되었다. 따라서 우선적으로 OpenCL 엔진 기반 하드웨어 가속 기술 최적화 연구를 통해 스마트 시설환경 실시간 시뮬레이션 기술 도입을 위한 기술적 과제를 풀어갈 것이다.

  • PDF

마이크로 열화상 계측 시스템의 IOT 모듈화 개발 (Development of Micro Thermal Image Acquisition System)

  • 이준엽;오종우;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.169-169
    • /
    • 2017
  • 스마트 돈사 내의 열환경 분석에 필수적으로 고려되어야 인자는 가축의 복사 에너지 변화로 볼 수 있다. 열환경 제어의 대상이기도 하지만 회귀적으로 열환경 변화의 인자이기도 하다. 이러한 가축의 복사 에너지 분석을 위하여 시설 내에 용이하게 배포가 가능한 열화상 계측 시스템을 개발하였다. 초소형 마이크로 열화상 계측 시스템에 부가적으로 IOT(Internet of Thing) 기반 기술을 이용한 모듈화 개발을 병행하였다. 열화상 계측 센서로 LWIR(Longwave infrared)영역에 해당하는 $8{\mu}m{\sim}4{\mu}m$의 영역에서 $0.05^{\circ}C$의 분해능을 보이는 $Lepton^{TM}$ (500-0690-00, FLIR, Goleta, CA)모델을 사용하였다. SPI(Serial Peripheral Interface) 속도 2 Mhz로 마이크로프로세서(NanoPi NEO Air, FrendlyArm, CA, USA)와 고속 통신을 수행하여 9 Hz의 계측이 가능하다. 열화상 센서와 마이컴으로 구성되는 단위 계측 시스템의 통신 기능 확장을 위하여 다음과 같이 세 단계의 정보 전달 시나리오를 설계하였다. 1) 단독적으로 열화상을 계측 하고 내장된 메모리에 저장하는 형식 2) 인접한 사용자 인터페이스에서 1번 단독 모듈에 접속하여 열화상을 실시간으로 전송하여 화면에 도시하는 형식 3) 2번 사용자 도시모듈과 병행적으로 Local WI-FI 통신을 이용한 모바일 기기에 화면을 도시하는 형식. 이와 같은 계층적이며 모듈화된 계측 시스템을 구성하기 위해서 1번 모듈에 공개 소프트웨어인 Hostapd 2.5(http://w1.fi/hostapd)버전을 설치하였다. 외부 인터넷 환경이 없는 상황에 1번 모듈 단독으로 AP(Access Point) 기능을 제공하여 지근 거리에 있는 2번 모듈과 3번 모바일 기기의 접속을 관리할 수 있다. 2번 모듈의 경우 화면 다수의 1번 모듈에 접속을 교차적으로 수행하는 방식과 2번 모듈 자체가 AP가 되어 1번 모듈의 접속을 허용하는 형태로 구성되어 있다. 계측 시스템의 계측 매트릭스 구성에 따라 선택적으로 결정할 수 있다. 1번 2번 모듈 공통적으로 TCP/IP Listener와 Client 서비스를 병렬적으로 수행할 수 있도록 개발을 하였다. 3번 모바일 기기에서 사용자 인터페이스 구현을 위하여 범용 Android 기반 GUI 프로그램과 Socket 통신을 연동시켰다. 1개의 열화상 Frame의 전송량은 9,600 Byte ($=80{\times}60{\times}2Byte$) 로 WI-FI 통신 전송 시 2회 ~ 6회 정도 내외로 가변적인 통신 수행 횟수를 나타내었다. 센서 계측 시스템과 정보 전송 시스템을 병렬적으로 구성한 모듈화 된 계측시스템의 전 요소에서 센서에서 제공하는 최대 계측 주기인 9 Hz 구현이 일반적으로 가능하였다. 이를 이용한 추후 연구를 통해 가축 객체의 열복사 정보와 돈사 내 열환경 간의 역학성을 연구할 것이다.

  • PDF

통합사고모형에 기반한 효율적 ICT 활용 전략 (Efficient-Use Strategy of ICT based on Integrated Thinking Model)

  • 이철현;박종오;이태욱
    • 정보교육학회논문지
    • /
    • 제5권3호
    • /
    • pp.415-431
    • /
    • 2001
  • 최근 국내 교육계의 최대 관심인 ICT 활용 교육은 활용 측면이 지나치게 강조되고 있고, ICT 활용 교육에 대한 연구도 실용적인 측면만이 부각됨에 따라 기능적인 활용으로 치우칠 수 있다는 우려를 낳고 있다. 본 연구는 이에 대한 대안으로서 ICT 활용을 이론적 차원에서 모색하여 효율적인 ICT 활용을 위한 구체적인 전략을 마련하고자 하였다. 먼저, 효율적 ICT 활용의 개념을 정의하였고, 전략 도출을 위한 기초 준거로 인간의 고등 사고를 설정하여 비판적 사고를 포함한 Iowa 교육부의 통합 사고 모형을 분석하였다. 이를 통해 효율적 ICT 활용을 위한 종합적 사고를 범주화하였다. 또한, 효율적 활용을 위한 ICT를 소프트웨어, 하드웨어, 활용 기술 영역으로 분류하여 각각의 개념과 상호 관계를 살펴보았다. 이렇게 분류한 ICT의 각 영역과 종합적 사고 범주와의 관련성을 규명하기 위해 '사고 영역과 ICT 영역간의 관련성 결정 준거'를 논의하였고, 이를 구체화한 'ICT-EUS 도출을 위한 분석 매트릭스'를 설정하여, 도출 과정의 타당성과 도출 결과의 명확성을 확보하고자 하였다. 이와 같은 과정을 통해 최종적으로 ICT의 영역 중 학습 자원, 학습 도구, 학습자, 탐색, 의사소통, 생산, 표현에 대한 ICT-EUS(Efficient-Use Strategy of ICT; 효율적 ICT 활용 전략)를 도출하였다. ICT-EUS는 ICT의 단순한 활용을 넘어서 학습 자원, 도구, 활용 기술 등에 대한 인지적 해석을 통해 학습 목표 달성의 효율성과 효과성을 제고할 수 있는 가능성을 제공할 수 있을 것으로 기대한다.

  • PDF

그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화 (Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts)

  • 박안진;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권9호
    • /
    • pp.572-587
    • /
    • 2008
  • SOFM(Self-organizing Feature Map)은 고차원의 데이타를 군집화(clustering)하거나 시각화(visualization)하기 위해 많이 사용되고 있는 비교사 학습 신경망(unsupervised neural network)의 한 종류이며, 컴퓨터비전이나 패턴인식 분야에서 다양하게 활용되고 있다. 최근 SOFM이 실제 응용분야에 다양하게 활용되고 좋은 결과를 보이고 있지만, 학습된 SOFM의 뉴론(neuron)을 다시 군집화해야 하는 후처리가 필요하며, 대부분의 경우 수동으로 이루어지고 있다. 후처리를 자동으로 하기 위해 k-means와 같은 기존의 군집화 알고리즘을 많이 이용하지만, 이 방법은 특히 다양한 모양의 클래스를 가진 고차원의 데이타에서 만족스럽지 못한 결과를 보인다. 다양한 모양의 클래스에서 좋은 성능을 보이기 위해, 본 논문에서는 그래프 컷(graph cut)을 이용하여 학습된 SOFM을 자동으로 군집화하는 방법을 제안한다. 그래프 컷을 이용할 때 터미널(terminal)이라는 두 개의 추가적인 정점(vertex)이 필요하며, 터미널과 각 정점 사이의 가중치는 대부분 사용자에 의해 입력받은 사전정보를 기반으로 설정된다. 제안된 방법은 SOFM의 거리 매트릭스(distance matrix)를 기반으로 한 모드 탐색(mode-seeking)과 모드의 군집화를 통하여 자동으로 사전정보를 설정하며, 학습된 SOFM의 군집화를 자동으로 수행한다. 실험에서 효율성을 검증하기 위해 제안된 방법을 텍스처 분할(texture segmentation)에 적용하였다. 실험 결과에서 제안된 방법은 기존의 군집화 알고리즘을 이용한 방법보다 높은 정확도를 보였으며, 이는 그래프기반의 군집화를 통해 다양한 모양의 클러스터를 처리할 수 있기 때문이다.

스마트 모바일 환경에서 의료정보 동적접근 시스템 (Medical Information Dynamic Access System in Smart Mobile Environments)

  • 정창원;김우홍;윤권하;주수종
    • 인터넷정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.47-55
    • /
    • 2015
  • 최근, 병원정보시스템의 환경은 다양한 스마트 기술을 접목하고 있는 추세이다. 따라서, 스마트 폰, 테블렛 PC와 같은 다양한 스마트 디바이스가 의료 정보 시스템에 활용된다. 또한, 이러한 환경은 이기종 센서, 디바이스, 시스템 및 네트워크에서 실행되는 다양한 응용 프로그램으로 구성된다. 이들 병원 정보 시스템 환경에서, 기존의 접근 제어 방식에 의한 보안 서비스를 적용하는 것은 문제가 된다. 기존 보안 방식의 대부분은 접근제어 리스트 구조를 사용한다. 이는 클라이언트 이름, 서비스 객체 메소드 이름으로 접근 제어 매트릭스에 의해 정의된 접근만을 허용한다. 가장 큰 문제점으로는 정적인 접근 방법은 변화되는 상황에 신속하게 적응하지 못한다. 따라서, 우리는 보다 유연하고, 매우 상이한 보안 요구와 다양한 환경에 적용 할 수 있는 새로운 보안 메커니즘을 필요로 한다. 또한, 환자중심의 의료 서비스 형태로 변화되고 있어, 이를 해결하기 위한 연구가 요구된다. 본 논문에서는 스마트 모바일 환경에서 의료정보 동적접근 시스템을 제안하고자 한다. 우리는 기존 병원정보 시스템의 환경을 기반으로 동적접근 제어 방법으로 의료정보 시스템에 접근하는 방법에 중점을 두었다. 물리적인 환경은 모바일 x-ray 영상 디바이스와 전용 모바일 스마트 디바이스, PACS, EMR 서버와 인증 서버로 구성하였다. 소프트웨어 환경은 모바일 X-ray영상기기는 Windows7 OS를 기반으로 동기화 및 모니터링 서비스를 위해 .Net Framework를 기반으로 개발하였다. 그리고 전용 스마트 디바이스는 Android OS를 기반으로 JSP와 Java SDK를 통한 동적접근 응용 서비스를 구현하였다. 병원의 의료영상정보 서버와 모바일 X-ray영상기기, 전용 스마트 디바이스간의 의료정보는 의료영상정보 표준인 DICOM을 기준으로 한다. 또한 EMR 정보는 H7을 기반으로 한다. 동적접근 제어 서비스를 제공하기 위해, 우리는 산소포화도, 심박수, 혈압과 체온과 같은 생체 정보의 값에 대한 조건에 의해 환자의 상황을 분류하고, 의료진의 의료정보 접속 인증 방법으로 동적인 접근 방법을 설계했다. 이는 일반 상태와 응급상태로 2부분으로 구분하여 이벤트 추적 다이어그램으로 보였다. 그리고, 인증 정보는 ID/PWD와 위치, 역할, 작업시간 그리고 응급 환자를 위한 응급 코드를 포함하였다. 동적접근 제어 방법의 일반적인 상황은 인증 정보의 값에 의해 의료정보에 접근 할 수 있다. 그러나 응급상황의 경우는 인증 정보 없이 응급 코드에 의해 의료정보에 접근하도록 하였다. 또한, 우리는 의료정보 표준에 따라 환자, 의료진 및 의료 영상 정보로 구성되는 의료정보 통합 데이터베이스 스키마를 구축했다. 끝으로, 우리는 제안 시스템의 수행 결과를 일반과 응급상황과 같은 환자의 상태에 따라 스마트 디바이스 기반으로 동적접근 응용 서비스의 유용성을 보였다. 특히, 제안 된 시스템은 동적 액세스 제어 방법에 의해 응급상황에서 스마트 디바이스기반의 효과적인 의료 정보 서비스를 제공한다. 이 결과, 제안한 시스템이 u-병원 정보 시스템과 서비스에 유용할 것으로 기대한다.