• Title/Summary/Keyword: 소청초 종합해양과학기지

Search Result 5, Processing Time 0.024 seconds

Application Study of Vessel Traffic Service: Dynamic Analysis of AIS for Shocheongcho Ocean Research Station (해상교통관제정보 활용 연구: 빅데이터 기반 해양 공간 선박 활동 특성 해석)

  • Park, Ju-Han;Kim, Seung-Ryong;Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.206-207
    • /
    • 2019
  • 우리나라에서 해상교통관제시스템(Vessel Traffic Service, VTS) 구역을 설정하여, 관제사를 중심으로 한 VTS와 선박사이의 해상교통상황 등의 교환을 통해 항만의 안전과 항만운영의 효율을 높이고 있다. 향후, 연안으로 확대될 예정이다. 더 넓은 해역에 대해서는 해양안전종합정보시스템(GICOMS)이 있으며, 선박자동식별장치 (AIS), 장거리위치추적시스템 (LRIT) 등에서 송신하는 선박의 운항정보를 수신하여 전자해도에 표시하고 있다. 이와 같은 선박관제정보는 빅데이터로 향후 자동화된 분석과 제원체계가 요구된다. 여기서는 해상교통관제정보 기초 활용 연구로, 소청초 종합해양과학기지주변의 AIS (Automatic Identification System)정보를 사용하여 선박 활동 특성 해석을 진행하였다.

  • PDF

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.

Quality Enhancement of Wave Data Observed by Radar at the Socheongcho Ocean Research Station (소청초 종합해양과학기지 Radar 파랑 관측 데이터의 신뢰도 향상)

  • Min, Yongchim;Jeong, JinYong;Shim, Jae-Seol;Do, Kideok
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Ocean Research Stations (ORSs) is the ocean platform type observation towers and measured oceanic, atmospheric and environmental data. These station located on the offshore area far from the coast, so they can produce the data without land effect. This study focused to improve the wave data quality of ORS station. The wave observations at ORSs are used by the C-band (5.8 GHz, 5.17 cm) MIROS Wave and Current Radar (MWR). MWR is convenient to maintenance and produce reliability wave data under bad weather conditions. MWR measured significant wave height, peak wave period, peak wave direction and 2D wave spectrum, so it's can provide wave information for researchers and engineers. In order to improve the reliability of MWR wave data, Datawell Waverider Buoy was installed near the one ORS (Socheoncho station) during 7 months and validate the wave data of MWR. This study found that the wave radar tend to be overestimate the low wave height under wind condition. Firstly, this study carried out the wave Quality Control (QC) using wind data, however the quality of wave data was limited. So, this study applied the four filters (Correlation Check, Direction Filter, Reduce White Noise and Phillips Check) of MWR operating software and find that the filters effectively improve the wave data quality. After applying 3 effective filters in combination, the RMSE of significant wave height decreased from 0.81m to 0.23m, by 0.58m and Correlation increased from 0.66 to 0.96, by 0.32, so the reliability of MWR significant wave height was significantly improved.

A Strategy for Environmental Improvement and Internationalization of the IEODO Ocean Research Station's Radiation Observatory (이어도 종합해양과학기지의 복사관측소 환경 개선 및 국제화 추진 전략)

  • LEE, SANG-HO;Zo, Il-SUNG;LEE, KYU-TAE;KIM, BU-YO;JUNG, HYUN-SEOK;RIM, SE-HUN;BYUN, DO-SEONG;LEE, JU-YEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.118-134
    • /
    • 2017
  • The radiation observation data will be used importantly in research field such as climatology, weather, architecture, agro-livestock and marine science. The Ieodo Ocean Research Station (IORS) is regarded as an ideal observatory because its location can minimize the solar radiation reflection from the surrounding background and also the data produced here can serve as a reference data for radiation observation. This station has the potential to emerge as a significant observatory and join a global radiation observation group such as the Baseline Surface Radiation Network (BSRN), if the surrounding of observatory is improved and be equipped with the essential radiation measuring instruments (pyaranometer and pyrheliometer). IORS has observed the solar radiation using a pyranometer since November 2004 and the data from January 1, 2005 to December 31, 2015 were analyzed in this study. During the period of this study, the daily mean solar radiation observed from IORS decreased to $-3.80W/m^2/year$ due to the variation of the sensor response in addition to the natural environment. Since the yellow sand and fine dust from China are of great interest to scientists around the world, it is necessary to establish a basis of global joint response through the radiation data obtained at the Ieodo as well as at Sinan Gageocho and Ongjin Socheongcho Ocean Research Station. So it is an urgent need to improve the observatory surrounding and the accuracy of the observed data.