• Title/Summary/Keyword: 소음흡음재

Search Result 117, Processing Time 0.024 seconds

Characteristics of Absorption Performance of Sound Absorptive Materials according to Test Conditions (흡음재의 시험조건에 따른 흡음성능 특성)

  • Kang, Dae-Joon;Lee, W.S.;Lee, J.W.;Hong, J.K.;Jo, Y.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.683-689
    • /
    • 2006
  • The sound absorption materials have been used to enhance the performance of a noise barrier and improve the room acoustics. In this study, 6 products of sound absorption materials generally used in Korea were chosen, and their absorption performance was tested in various conditions, that is, it was measured while changing thickness, density and air-gap in their back, and measured with or without facing on their face.

A Study on the Acoustical Characteristic of a Ultra Lightweight Concrete Absorber (초경량 콘크리트 흡음재의 음향특성에 관한 연구)

  • Jung, Sung-Soo;Kim, Yong-Tae;Lee, Won-Am;Han, Ki-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.594-599
    • /
    • 2000
  • Two basic acoustic quantities, the characteristic impedances and the propagation constants, of the two different ultra lightweight concrete absorbers were examined with impedance tube method. A transmission loss was tested and compared with theoretical values. The results show that these kinds of sample have proper sound absorption and transmission loss capabilities. It means that they can be used in various fields where noise proof is needed.

  • PDF

A Study on the Effect of Acoustic Properties on the Absorption Characteristics of Polyester Fiber Materials (폴리에스터 흡음재 흡음특성에의 음향 물성치 영향평가 연구)

  • Park, Hern-Jin;Jeong, Myong-Guk;Shim, Sung-Young;Lee, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.885-891
    • /
    • 2003
  • Effects of each acoustic property on absorption characteristics of polyester fiber materials has been studied in this paper. It would be impossible for us to measure effects of each acoustic property by experimental method since we cannot make sound-absorbing materials in which only one of the properties is changed. We have adopted a numerical prediction method to carry out parameter studies for each acoustic property. And to get a general behavior of acoustic performance of the materials, the numerical simulation has been repeated to several cases of different bulk density. Finally we have obtained frequency-dependent control factors in the absorption performance which gives us design capability of acoustic absorbing materials.

  • PDF

The Noise Reduction of Industrial Blower due to Close Type Enclosure (밀폐형 방음상자에 의한 산업용 송풍기 소음 저감)

  • Cho, Tae-Jea
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.128-132
    • /
    • 2008
  • The noise levels and individual employee noise exposure levels within a factory will determine the need for hearing conservation program. The difficulty in not having an effective hearing conservation program is the risk of hearing loss that employees may sustain. In the last few years the claims for hearing loss compensation have grown due to class action litigation brought against the employer and companies that have equipment in the factory alleged to have caused hearing loss. The Blower in the factory generates the noise of 98.3dB(A) in the frequency range of 2,000Hz, which may cause occupational hearing loss. By designing close type enclosures which are made of absorption material, about 24.4dB(A) reduction has been in the factory. It is demonstrated that this kind of enclosures can be effectively used to reduce the noise in the factory.

Finite Element analysis of Acoustic Behavior of Absorbent Materials with experimental Verification (유한요소법에 의한 흡음재 음향특성 연구 및 검증)

  • 정환익;김관주;박진규;김상헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.874-878
    • /
    • 2003
  • Acoustic materials are used for the purpose of absorbing noise and reducing transmission of sound into the receiving room. The purpose of this research is to predict the performance of absorbent materials with respect to absorbing behavior and transmission loss as possible as accurately. The performance of the absorbent materials are carried out systematically as follows: The Biot parameter are measured, first. Then using above parameters as input, LMS's SYSNOISE and VIOLINS programs are used to predict absorption coefficient and transmission loss values, which magnitudes are compared with experimental results. As an sample acoustic material, SK SKY VIVA and PET are selected.

  • PDF

A New Method for Measuring Characteristic Impedance and Propagation Constant of Sound-Absorbing Materials (흡음재의 특성임피던스와 전파상수의 새로운 결정방법)

  • 황철호;정성수;은희준
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.781-787
    • /
    • 1997
  • A new method is presented to determine two fundamental acoustic quantities of sound-absorbing materials such as characteristic impedance and propagation constant. In this study, the surface acoustic impedances of sound-absorbing materials are measured using the impedance tube and the anechoic chamber to determine the above acoustic quantities. The measured results are given for two typical sound-absorbing materials(glass wool and urethane foam) int the frequency range between 150 and 1, 600 Hz. The results are verified by other two known methods, which are Smith & Parrott method and Utsuno et al. method. The absorption coefficients calculated from the empirical models(Miki model for glass wool and Jung model for urethane foam) and two quantities by present method are in good agreement with the measured values.

  • PDF

A Study on the Improvement of Acoustic Absorption of Multiple Layer Perforated Panel Systems (다중 다공판 시스템의 흡음성능 향상에 관한 연구)

  • Lee, Dong-Hoon;Seo, Seong-Won;Hong, Byung-Kuk;Song, Hwa-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.571-577
    • /
    • 2005
  • The acoustic absorption of multiple layer perforated panel systems is largely reduced at the anti-resonance frequency. In order to improve the acoustic absorption at the anti-resonance frequency, the sound absorbing materials are inserted between perforated panels. By the insertion of absorbing materials, it is found that the multiple layer perforated panel system has better acoustic absorption at the anti-resonance frequency and more broadband frequency. Besides, it is shown that the absorption coefficients from the transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated panels, airspaces or sound absorbing materials.

A Study on the Sound Absorption Performance of a Helmholtz Resonator Combined with Porous Materials (흡음재가 조합된 헬름홀츠 공명기의 흡음성능에 관한 연구)

  • Lee, Dong-Hoon;Song, Hwa-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.628-633
    • /
    • 2009
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

Anechoic Chamber Design using Broadband Compact Absorber (패널형 흡음재를 이용한 무향실의 설계)

  • ;;Peter Brandstatt;Helmut V. Fuchs
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.393-396
    • /
    • 2003
  • Conventional method for designing and installing anechoic chambers is to utilize porous wedges for the sound absorbers. As cutoff frequency lowers down such as 63Hz or 50Hz, the corresponding long wedges diminish the free field area of the chamber. In this study, a new broadband compact absorber(BCA) is introduced which absorbs acoustic energy down to 50Hz. Most prominent is that it measures only 250mm thick. A freely vibrating panel between the non-fibrous absorbers allows tuned absorption at the low frequency region in addition to the high frequency absorption resulted from the conventional absorber installed at the front. Standing waves at low frequency range are suppressed as the BCA modules which are tuned to the corresponding modes absorb sound energy effectively, resulting in anechoic condition. Not only the low frequency performances, but the high frequency absorption is measured to meet adequate conditions for the anechoic chamber. Realized BCA chambers are presented.

  • PDF

Investigation of Sound Absorbing Characteristics of the Railway Noise Barrier by Changing the Configuration of the Front Perforated Panel and Absorbing Material (철도 방음벽의 전면 타공과 흡음재에 의한 흡음성능 고찰)

  • Kim, Kwanju;Kim, Sanghun;Park, Jinkyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.575-580
    • /
    • 2013
  • This study focused on the identification of sound characteristics according to the configuration of sound absorption material and perforated panel dimensions. Noise barriers consist of front perforated panel, sound absorption material and back plate. Noise barriers' acoustic performance should be required to meet the NRC of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of perforated panel and the efficiency of the absorbing material. This study try to find out the possibilities of applications to railway usage.

  • PDF