• Title/Summary/Keyword: 소음의 감쇠

Search Result 537, Processing Time 0.02 seconds

Transverse Vibration Analysis of the Deploying Beam by Simulation and Experiment (시뮬레이션과 실험을 통한 전개하는 보의 횡 방향 진동 분석)

  • Kim, Jaewon;Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.866-873
    • /
    • 2015
  • The transverse vibration of the deploying beam from rigid hub was analyzed by simulation and experiment. The linear governing equation of the deploying beam was obtained using the Euler-Bernoulli beam theory. To discretize the governing equation, the Galerkin method was used. After transforming the governing equation into the weak form, the weak form was discretized. The discretized equation was expressed by the matrix-vector form, and then the Newmark method was applied to simulate. To consider the damping effect of the beam, we conducted the modal test with various beam length. The mass proportional damping was selected by the relation of the first and second damping ratio. The proportional damping coefficient was calculated using the acquired natural frequency and damping ratio through the modal test. The experiment was set up to measure the transverse vibration of the deploying beam. The fixed beam at the carriage of the linear actuator was moved by moving the carriage. The transverse vibration of the deploying beam was observed by the Eulerian description near the hub. The deploying or retraction motion of the beam had the constant velocity and the velocity profile with acceleration and deceleration. We compared the transverse vibration results by the simulation and experiment. The observed response by the Eulerian description were analyzed.

Experimental study on the sound attenuation of the fire alarm sounder system in apartment buildings (공동주택 화재경보 발생음 특성에 관한 실험연구)

  • Lee, Min-Joo;Kang, Hee-Hyuk;Kwon, Bong-Suk;Kim, Myung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1162-1168
    • /
    • 2007
  • In many fire emergencies, the audible fire alarm signals are very important to save the occupant's life. But as the sound insulation of building elements has been improved, it is more difficult for occupant to recognize the fire alarm signals when the fire alarm worked. This is the study to show the sound attenuation of the fire alarm sounder system in apartment buildings. We measured and analyzed the sound attenuation level in 17 units, and the results were compared with the minimum sound level at sleeping area by NFPA(National Fire Protection Association) 72. When only the fire alarm worked in stair hall, the sound levels in bedroom were in the range of $30.6{\sim}42.8dB(A)$ and the differences between sound level and ambient sound level in bedrooms were in the range of $7.1{\sim}13.8dB(A)$. And when the emergency broadcasting device in the livingroom and the fire alarm worked simultaneously, the sound levels in bedrooms were in the range of $54.2{\sim}63.0dBA$. Finally, it was showed that the fire alarm sounder system didn't give a sufficient sound level in bedroom to awake out of sleep.

  • PDF

A Study of Enemy Aptitude of Pistol Sound Source for Space Estimation (공간평가를 위한 피스톨음원의 적정성에 관한 연구)

  • Shon, Jang-Ryul;Kim, Jung-Joong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.320-328
    • /
    • 2005
  • Last target of architectural acoustics is that people wish to convey voice effectively from the space adaptively in use purpose in building. But, how exactly through space sound (sound source) that wish to deliver from indoor can be passed method to do quantification and evaluate quantity of sound by method to serve indoor architectural acoustics estimation summer period and methods to estimate definition propose. This Study searches special quality of sound source about MLS signal that is occurred short-answer sound source (pistol sound source) and nondirectional speaker among indoor sound estimation method, and measure and analyzed reverberation time (RT60), definition (C80, D50) by regulation of each ISO 3382 in age place (classroom, hall, gymnasium). Analysis result and sound factor among could know that d of two sound sources converges in measurement error extent about reverberation time (RT60) of analysis incidental and sound factors and value shows change irregularly about sound factor of D50, C80, pistol sound source judged there is problem. Also, could know that problem is happened in deflection except reverberation time is in deflection analysis with wave that measure each in fixed distance in branch. Finally, when differ size of sound source and measure about change of sound pressure level in case measure sound pressure level giving difference about 10 dB, sound factor could know that there is no different effect.

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Design for Improving the Loss Factor of Composite with Sandwich Structure (샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계)

  • Lee, C. M.;Jeon, G.S.;Kang, D.S.;Kim, B.J.;Kim, J.H.;Kang, M.H.;Seo, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

An Experimental Investigation of the Aeroelastic Stability of Next-Generation Blade for Helicopter (헬리콥터용 차세대 블레이드의 공력탄성학적 안정성에 관한 시험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Seung-Ho;Lee, Je-Dong;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.680-685
    • /
    • 2006
  • This paper describes the aeroelastic stability test of the small-scaled 'Next-Generation Blade(NRSB)' with NRSH (Next-Generation Hub System) and HCTH hingeless hub system in hover and forward flight conditions. Excitation tests of rotor system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were tarried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, NRSB-1F blades with HCTH hub system, Then NRSB-1F with NRSH hub system were tested. Second, NRSB-2F blades with NRSH hub system were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Non-rotating natural frequencies, non-rotating damping ratios and rotating natural frequencies were showed similar level fir each cases. Estimated damping ratios of NRSB-1F, NRSB-2F with HCTH and NRSH were above 0.5%, and damping ratio increased by collective pitch angle increasement. Furthermore damping ratios of NRSB-2F were higher than damping ratios of NRSB-1F in high pitch angle. It was confirmed that the blade design for noise reduction would give observable improvement in aeroelastic stability compared to paddle blade and NRSB-1F design.

  • PDF

An Experimental Investigation of the Aeroelastic Stability of Next-generation Blade for Helicopter (헬리콥터용 차세대 블레이드의 공력탄성학적 안정성에 관한 시험적 연구)

  • Kim, Joune-Ho;Kim, Seung-Ho;Lee, Je-Dong;Rhee, Wook;Song, Keun-Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.848-856
    • /
    • 2006
  • This paper describes the aeroelastic stability test of the small-scaled 'Next-generation Blade(NRSB)' with NRSH (next-generation hub system) and HCTH hingeless hub system in hover and forward flight conditions. Excitation tests of rotor system installed in GSRTS (general small-scale rotor test system) at KARI (Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(moving block analysis) technique was used for the estimation of lead-lag damping ratio. First, NRSB-1F blades with HCTH hub system, then NRSB- 1F with NRSH hub system were tested. Second, NRSB-2F blades with NRSH hub system were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Non-rotating natural frequencies, non-rotating damping ratios and rotating natural frequencies were showed similar level for each cases. Estimated damping ratios of NRSB-1F, NRSB-2F with HCTH and NRSH were above 0.5%, and damping ratio increased by collective pitch angle increasement. Furthermore damping ratios of NRSB-2F were higher than damping ratios of NRSB-1F in high Pitch angle. It was confirmed that the blade design for noise reduction would give observable improvement in aeroelastic stability compared to paddle blade and NRSB-1F design.

Mechanical Characteristics Analysis of Structural Light-weight Aluminum Foam (구조용 경량 알루미늄 발포금속의 기계적 특성 연구 분석)

  • Ma, Jeong Beom;Lee, Jeong Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Aluminum foam is one of the representative light-weight materials. In this study we analyzed the mechanical properties of the aluminum foam structures. Aluminum materials with pores have novel mechanical characteristics such as flame retardancy, damping, and energy absorption which are superior to those of polymer foam. Furthermore its reusable properties draw considerable interests. General properties, energy and acoustic absorption will be investigated and future research issues such as binding techniques of foam materials with other structures will be discussed through foam application examples.

Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(II)-attenuation and Nonlinear Effect of Compression Waves- (고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(2)-압축파의 감쇠와 비선형효과-)

  • ;;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1972-1981
    • /
    • 1995
  • As a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. The impulsive noise is closely related to the pressure gradient of the compression wave propagating the tunnel. In order to investigate the characteristics of the compression waves, in the present study an experiment was made using a shock tube. The results show that the strength of a compression wave decreases with the distance from the tunnel entrance and the nonlinear effect of compression wave appears to be significant if strength of the initial compression wave is greater than 7 kPa. Furthermore if the wave pattern is known, attenuation of the compression wave propagating in a tunnel can be reasonably predicted by a theoretical equation considering viscous action and heat transfer in boundary layer.