• Title/Summary/Keyword: 소음영향평가

Search Result 344, Processing Time 0.023 seconds

A study on the Calculation of Noise Correction Coefficient on each floor for the estimation on the roadside traffic noise around the Apartment Building (도로변 공동주택의 층별 소음보정계수 산정에 관한 연구)

  • Park, Young Min;Lee, Ji Wang;Ko, Jung Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.1
    • /
    • pp.25-36
    • /
    • 2005
  • Actually, prediction formula of road traffic noise for EIA(Environmental Impact Assessment) has been used that proposed by National Institute of Environmental Research in 1999. The prediction formula, however, was calculated predicted noise level according to noise level producing on first floor, then needs to correct noise level at each floor in the case of apartment building. The investigation was carried out to calculate the correction coefficient for commonly using in EIA of large scaled apartment development areas. The noised level at each floor were measured from August 2001 to March 2002 at 31 investigation points of large scaled apartment development area in national wide. Measured data were divided and treated with 4 types as 3th floor, 5th floor, 7th floor and 10th floor and then the correction coefficients of each floor were calculated using by correlation formula according to each floor.

A Study on the improvement plan of regulatory standard for construction noise and vibration (공사장 소음진동 규제기준 개선방안에 관한 연구)

  • Park, Young-Min;Kim, Kyoung-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.369-379
    • /
    • 2013
  • Noise and vibration problems at the construction site, expansion of construction scale and frequency of urban construction is increased, has given the damage to local residents. Also, the result of civil complaint about noise and vibration that occurred in 2011 was 56,244; it is showing an increasing trend of more than 4% annually. In particular, the construction noise and vibration, the civil complaints of around construction site accounts for 64.6%(36,353), are harmful to the tranquility of living environment. As a result, the government has managed to strengthen the regulatory standard of construction noise (65dB(A), Day-time) from 2011. However, the regulatory standard of construction noise and vibration does not meet and also complaints related the construction noise and vibration not decreased. Because the management system can be applied to the construction site is insufficient and a shortage of manpower. In this study, investigated the status and problems of the regulatory standards related to construction noise and vibration, we propose an efficient management plan of construction noise and vibration.

Study on Efficient Port Environmental Management for Sustainable Port Operation (I): Case Study of Marine Environments and Natural Resources Impacts by Busan New Port Development (지속가능한 항만운영을 위한 효율적 항만환경관리에 관한 연구 (I): 부산 신항만 개발로 인한 해양환경 및 자원 영향성 평가 사례)

  • Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.401-412
    • /
    • 2016
  • The sustainable operation and development of ports is a key industry for Korea's national economy. It is increasingly more important to resolve conflicts with local communities due to port environmental problems such as air pollution, water pollution, noise and ecosystem destruction while securing port competitiveness through infrastructure expansion. In case of the Busan New Port development project in Korea, construction has been temporally suspended due to conflict with local fishermen over marine sand mining for construction. A primary reason for this is the absence and limitation of qualitative port environmental impact assessment methodologies in Korea. This includes the current investigation of fisheries damaged by ports. Therefore, the main purpose of this study is to propose economic valuation methods for assessing environmental impacts that are essential for efficient port environmental management and for sustainable port operation and development in Korea. To do this, this study examines the overall port environmental problems and their effects (damages) through the analysis of environmental policies and case studies of domestic and overseas ports. Then economic valuation methods are suggested for total economic values (TEV) of damaged environmental goods and services. Among the proposed methods, Habitat Equivalency Analysis (HEA), as a more scientific data based method, was applied to estimate marine ecosystem service damages from the designation of Busan New Port Anchorages. Finally, based on the study results, more efficient port environmental management will be achieved through the institutional adoption of the proposed economic impact assessment methods for port environmental damages.

A Study on the Impacts of Mirror Design Parameters on the Wind Noise (미러 형상인자가 바람소리에 미치는 영향에 대한 연구)

  • Ih, Kang-Duck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.130-136
    • /
    • 2009
  • The goal of this paper is to develop a standard side mirror geometry that will perform well across multiple vehicles. One of the important performance attributes of a side mirror is the amount of wind noise generated under the flow conditions on a car. PowerFLOW can be used for Computer Aided Testing of the aeroacoustics performance of a design in addition to directing design modifications based on a detailed analysis of the flow structures responsible for the noise generation. Alternatively, a Design of Experiment (DOE) approach is useful to explore the design space without any a-priori assumptions of the effects of design parameter changes. Some general design guidelines regarding the significant mirror geometry factors will be determined which may help to reduce vehicle development time and cost in the future. The results of this research will also allow us to estimate the trade-off between cost saving and performance optimum related to using a standard mirror shape for different vehicles.

  • PDF

Pull-in Behavior Analysis in Optical Disk Drive Using Phase Plane and Evaluations for Effecting Parameters of it (위상 평면을 이용한 광 디스크 트랙 끌어들임의 동적 해석 및 영향 인자의 평가)

  • Choi, Jin-Young;Park, Tae-Wook;Yang, Hyunseok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.29-38
    • /
    • 2005
  • The track pull-in behavior analysis in an optical disk drive (ODD) using plane phase and the evaluations for effecting parameters of it are discussed. Track pull-in, track capture procedure to do track following control, is a key factor to increase data transfer rate. First, the relative velocity between the beam spot of an optical pick-up and the target track of an optical disk is analyzed during the track pull-in procedure. In this process, it is showed that the track error signal has nonlinear characteristics which are depending on the time. Second, Runge-Kutta method to solve the nonlinear equation is applied to find the track pull-in behavior, and some optimal parameters to get stable and fast pull-in condition are obtained. Then, the phase plane analysis for track pull-in procedure is presented. Finally, some comments for the simulated results are discussed briefly.

A Study on the Vibration Reduction Method for Main steam Piping in Nuclear Power Plant (원자력발전소 주증기관의 진동감쇠 연구)

  • Kim, Yeon-Whan;Kim, Jong-Yeob;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.215-220
    • /
    • 1996
  • 원자력발전소의 주증기관은 증기발생기와 터빈을 연결하는 주요 계통으로서 여기서 발생하는 배관진동은 주요기기의 연결부, 밸브, 배관지지물과 건물 등에 복합적인 반복하중을 가하여 관련 지지물 및 구조물에 열화현상을 발생시켜 발전소의 안전운전에 심각한 영향을 초래할 가능성을 항상 내포하고 있다. 그럼에도 불구하고 배관진동 대책은 대부분 지지물을 추가로 설치하여 진동준위만 낮추고 있는 실정이다. 따라서 구체적인 배관진동의 예측, 측정 및 평가, 감쇠방안에 이르는 종합적이고 체계적인 연구가 요구되고 있다. 본 연구에서는 지지물의 열화현상 및 부분적인 파손으로 진동준위가 높아진 것으로 추정되는 원자력발전소 주증기관의 진동특성 및 요인을 분석하여 진동감쇠 방안을 도출하고 검증함으로써 배관 및 주변 구조물의 건전성을 확보하고 설비의 신뢰성을 확보하고자 하였다. 이를 위하여 주증기관을 모델링하여 해석하였으며, 발전소의 기동 및 정상운전시의 진동준위를 측정하였다. 또한 발전소의 정진기간중 일부 배관계에 대한 실험적 모우드 해석을 수행하였다. 여러가지 진동감쇠 방안을 검토하여 탄성지지 및 에너지 흡수효과를 동시에 발휘할 수 있는 특수 지지물(WEAR$_{TM}$)을 설치하는 방안을 도출하였으며, 현장에 설치한 후 배관의 진동상태를 확인함으로서 효과적인 방안임을 검증하였다.

  • PDF

A Case of Application-blasting in the Urban Blasting Works (도심지 터파기를 위한 응용발파 시공 사례)

  • Kim, Taihyun;Park, Yongwon;Cho, Raehun;Kim, Hongyool;Jeong, Byungho
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.18-30
    • /
    • 2016
  • A drill & blasting method using explosives is the most efficient way to break the rock in the urban projects. However, the blasting method cause vibration, noise and fly-rock as blast pollutions so that blasting wroks are restricted by adjacent structures such as apartment and residence houses. To conduct blasting works at near structures, the numbers of blast-holes a blast and the size of the blast are limited by kinds of detonators and initiation methods. So, the production rate is reduced and the construction period should be increased. Therefore, in this case the deck-charge blasting methods using available detonators in domestic market were designed and evaluated in order to confirm the application possibilities in specific urban sites.

Dynamic Interactions between the Reactor Vessel and the CEDM of the Pressurized Water Reactor (가압경수로 원자로용기와 제어봉 구동장치의 동적 상호작용)

  • Jin, Choon-Eon
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.837-845
    • /
    • 1997
  • The dynamic interactions between the reactor vessel and the control element drive mechanisms (CEDMs) of a pressurized water reactor are studied with the simplified mathematical model. The CEDMs are modeled as multiple substructures having different masses and the reactor vessel as a single degree of freedom system. The explicit equation for the frequency responses of the multiple substructure system are presented for the case of harmonic base excitations. The optimum dynamic characteristics of the CEDMs are presented to reduce the dynamic responses of the reactor vessel. The mathematical model and its response equations are verified by finite element analysis for the detailed model of the reactor vessel and the CEDMs for the harmonic base excitations. It is finally shown that the optimal dynamic characteristics of the CEDM presented can be applicable for the aseismic design.

  • PDF

Vibration Evaluation and Accuracy Improvement for a Digital Pile Rebounding and Penetration Monitoring System (DPRMS) (디지털 항타관리기(DPRMS)의 진동영향 평가 및 측정 정밀도 향상 방안에 관한 연구)

  • Hong, Jung-Taek;Lee, Kye-Young;Lee, Sang-Hun;Han, Song-Soo;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.514-520
    • /
    • 2006
  • In this study, the performance of a digital pile rebounding and penetration monitoring system (DPRMS) is evaluated and the measurement precision of the DPRMS is improved. The DPRMS is a high speed line-scanning camera system to measure the rebound and penetration of a pile in a construction work. A main problem in the DPRMS is a measurement error, which is caused by a shock or vibration due to a hammer impact. The measurement error is investigated by analyzing vibration signals of the DPRMS during the impact. Moreover, the frequency response functions of the DPRMS are also analyzed. As a result, it is found that the tripod height has an influence on the DPRMS performance and a shorter tripod is better. One more founding in this study is that the DPRMS should be placed with a appropriate distance from a pile for improving the measurement precision.

Assessment of Blast-induced Vibration for the Stability of Discontinuous Rock Mass (암반절리를 고려한 발파진동 영향평가)

  • Park, Byung-Ki;Jeon, Seok-Won;Park, Gwang-Jun;Do, Deog-Soo;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.485-492
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been Increased recently in order to analyze the effect of the blast-induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure curves estimated by theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a discontinuum dynamic analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced vibration and the stability of rock slope.