• Title/Summary/Keyword: 소식(小式)

Search Result 19,081, Processing Time 0.04 seconds

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Isolation and Characterization of Fungal Diversity from Crop Field Soils of Nigeria

  • Yadav, Dil Raj;Kim, Sang Woo;Adhikari, Mahesh;Babu, Anam Giridhar;Um, Yong Hyun;Gim, Eun Bi;Yang, Jae Seok;Lee, Hyug Goo;Lee, Youn Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.49-49
    • /
    • 2014
  • In order to find indigenous beneficial fungal species from crop field soils of Nigeria, 23 soil samples were collected from various places of Nigeria in June, 2013 and fungi were isolated through serial dilution technique. Isolated fungi were purified and differentiated according to their morphological and microscopic characteristics. In total, 38 different representative isolates were recovered and the genomic DNA of each isolates was extracted using QIAGEN$^{(R)}$ Plasmid Mini Kit (QIAGEN Sciences, USA) and the identification of fungi was carried out by sequence analysis of internal transcribed spacer (ITS) region of the 18S ribosomal DNA (18S rDNA). Recovered isolates belonged to 9 fungal genera comprising Fusarium, Aspergillus, Chaetomium, Coniothyrium, Dipodascaceae, Myrothecium, Neosartorya, Penicillium and Trichoderma. Aspergillus spp., Penicillium spp. and Trichoderma spp. were the most dominant taxa in this study. The antagonistic potentiality of species belonged to Trichoderma against 10 phytopathogenic fungi (F. oxysporum, C. gloesporoides, P. cytrophthora, A. alternata, A. solani, S. rolfsii, F. solani, R. solani, S. sclerotiorum and P. nicotiana) was assessed in vitro using dual culture assay. The dual culture assay results showed varied degree of antagonism against the tested phytopathogens. The potential Trichoderma spp. will be further evaluated for their antagonistic and plant growth promotion potentiality under in vivo conditions.

  • PDF

Genotyping of Agaricus bisporus Strains by PCR Fingerprints

  • Min, KyongJin;Oh, YounLee;Kang, HeeWan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.41-41
    • /
    • 2014
  • Agaricus bisporus, commonly known as the button mushroom, is the most widely cultivated species of edible fungi. Low frequency of recombination ratio and homokaryotic or monokaryotic spore on meiotic basidia form obstacles for breeding programs. Since the first hybrid varieties for white button mushrooms were released in Europe, new varieties released afterwards were either identical of very similar to these first hybrids on morphologies. Therefore, different DNA markers have been used to define unique varieties of A. bisporus strains. Aim of this study is to assess the genetic diversity of different A. bisporus strains in Korea. Twelve UFP (Universal fungal primer, JK BioTech. Ltd), 12 simple sequence repeat (ISSR) and 30 SSR primers were used to assess genetic diversity of monokaryotic and dikaryotic Agaricus bisporus strains including other 19 Agaricus spp. Of them, four UFP, four SSR primers, $(GA)_8T$, $(AG)_8YC$, $(GA)_8C$ and $(CTC)_6$ and seven SSR markers produced PCR polymorphic bands between the Agaricus species or within A. bisporus strains. PCR polymorphic bands were inputted for UPGMA cluster analysis. Forty five strains of A. bisporus are genetically clustered into 6 groups, showing coefficient similarity from 0.75 to 0.9 among them. In addition, genetic variations of monokaryotic and dikaryotic Agaricus bisporus strains were partially detected by PCR technologies of this study. The varieties, Saea, saedo, Saejeong and Saeyeon that have recently been developed in Korea were involved in the same group with closely genetic relationship of coefficient similarity over 0.96, whereas, other strains were genetically related to A. bisporus strains that were introduced from USA, Eroupe and Chinese.

  • PDF

Ecological Characteristics and Unique Diagnostic Techniques of Apple Blotch Disease Caused by Marssonina coronaria in Korea

  • Back, Chang-Gi;Lee, Seung-Yeol;Jung, Hee-Young
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.36-36
    • /
    • 2014
  • Apple blotch, caused by Marssonina coronaria, induce early defoliation in apple and leading to critical economic losses in apple orchards in Korea. Since M. coronaria is difficult to culture, we developed isolation and cultural method. We collected M. coronaria isolates from Gyeongbuk Province and then constructed phylogentic tree based on ITS regions. As the results, phylogenetic relationship indicated that all Korean isolates formed a same cluster and closely related to Chinese isolates [1]. Ecological characteristic of M. coronaria have been observed in apple orchards which located in Gyeongbuk Province from 2011 to present. As the results, the typical apple blotch symptoms were observed from July, and then the infected leaves were discolored and formed acervuli on the leaves. After rainfall, severe infection of symptoms such as discoloration and early defoliation were continuously observed until October. Also overwintered conidia were observed in next March on the fallen diseased leaves [2]. In the last 5 years, ascopores of M. coronaria were not observed in apple orchards which were severely infected by M. coronaria in Korea. Thus, it is assumed that overwintered conidia could be a primary inoculum of M. coronaria. Meanwhile, apple blotch has long latent periods compare to other apple disease. During the latent period, early diagnosis of apple blotch is the most important to control the disease by spray fungicide. In this reason, we developed novel diagnostic method to detect M. coronaria during latent period using optical coherence tomography (OCT) and Loop-mediated isothermal amplification (LAMP) method [2, 3]. In this presentation, it will introduce ecological characterization of M. coronaria in Korea and unique detection technique of M. coronaria in apple. It will be helpful to develop new strategies to control apple blotch in Korea.

  • PDF

Are Cryptic Species Real?

  • Crous, Pedro W.
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.29-29
    • /
    • 2014
  • Since Darwin and Wallace introduced the concept on the evolution of species, scientists have been furiously debating what species are, and how to define them. This basic yet intriguing question has bothered us ever since, as communicating to fellow biologists about fungal species is the very cornerstone of mycology. For the species presently known, this has largely been accomplished via Latin binomials linked to morphology in the absence of DNA barcodes. In recent years mycologists have embraced the ribosomal ITS as official barcode region for Fungi, and this locus is also mainly used in environmental pyrosequencing studies. Furthermore, DNA data can now also be used to describe sterile species in the absence or lack of distinct morphological structures. Recent developments such as the registration of names in MycoBank, and linking the phenotype to the genotype, have significantly changed the face of fungal systematics. By employing the Consolidated Species Concept, incorporating genealogical concordance, ecology and morphology, robust species recognition is now possible. Several international initiatives have since built on these developments, such as the DNA barcoding of holdings of Biological Resource Centres, followed by the Genera of Fungi Project, aiming to recollect, and epitypify all type species of all genera. What these data have revealed, is that most genera are poly- and paraphyletic, and that morphological species normally encompass several genetic entities, which may be cryptic species. Once we provide a stable genetic backbone capturing our existing knowledge of the past 250 years, we will be able to accommodate novelties obtained via environmental sequencing platforms. Being able to communicate these species to other biologists in a clear manner that is DNA-based, will enable scientists to elucidate the importance, role and ecological interactions that these fungi have on our planet.

  • PDF

Biological function of CpSlt2, an ortholog of the cell wall integrity (CWI) MAPK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica

  • So, Kum-Kang;Ko, Yo-Han;Chun, Jeesun;Kim, Jung-Mi;Kim, Dae-Hyuk
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.11-11
    • /
    • 2018
  • Cryphonectria parasitica, chestnut blight fungus, has a characteristic of decreasing pathogenicity when infected with Cryphonectria hypovirus 1. C. parasitica is known to be one of the most representative model systems used to observe the interaction between viruses, plants and fungi. The mitogen-activated protein kinase (MAPK) pathway, which is well conserved in various organisms ranging from yeast to humans, functions in relaying phosphorylation-dependent signals within MAPK cascades to diverse cellular functions involved in the regulation of pheromone, cell wall integrity, and osmotolerance in filamentous fungi. Several genes in the MAPK pathway were revealed to be regulated by hypovirus, or to be involved in pathogenicity in C. parasitica. Among these pathways, the CWI pathway has aroused interest because CpBck1, an ortholog of yeast Bck1 (a CWI MAPKKK), was previously reported to be involved in cell wall integrity and sectorization. Interestingly, sporadic sectorization was observed in the CpBck1 mutant and sectored phenotypes were stably inherited in the progeny that were successively transferred from sectored mycelia. In this study, we analyzed the biological function of CpSlt2, downstream gene of CpBck1, to confirm whether the sectorization phenomenon occurred in the specific single gene or cell wall integrity (CWI) pathway. As results, the CpSlt2-null mutant exhibited marked changes in colonial growth, near absence of conidiation and aerial hyphae, abnormal pigmentation, CWI-related phenotypic defects, and dramatically impaired virulence. As cultivation of the mutant strains progressed, the majority of the colonies showed sporadic sectorization and mycelia from the sectored area stably maintained the sectored phenotype. These results suggest that the unique sectorization is CWI pathway-specific, though the components in the same CWI pathway have common and specific functions.

  • PDF

Characteristics of mycelial growth and fruit body of Sparassis latifolia strains and selection of suitable incubation conditions in liquid spawn

  • Lee, Yunhae;Gwon, Heemin;Jeon, Daehoon;Choi, Jongin;Lee, Youngsoon
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.29-29
    • /
    • 2018
  • Sparassis latifolia is called "Cauliflower Mushroom" and is known as an edible mushroom that has high content of ${\beta}$-glucan. Recently, artificial cultivation of S. latifolia has been done by bottle, plastic bag and wood cultivation in Korea. However it is not widely used because there are low incubation ratio and yield. For the high efficiency of production, we aim to find the superior strains and media for better mycelial and fruit body growth. First, we analyzed the genetic relationship among 31 strains and divided five groups with three kinds of URP primers. And then ten strains were selected from five groups based on the experiment of mycelial growth. The suitability of media for mycelial growth was different according to media type. The suitable solid and liquid media for mycelial growth of S. latifolia isolates were PDA and M2, respectively. In addition, with regard to C/N ratio, the mycelial growth increased even until C/N 160. Second, we investigated the production of fruitbody of the strains by plastic bag cultivation. The substrate was mixed with larch sawdust, corn flour, and wheat flour (8:1:1, v/v). Moisture content of substrate was controlled by about 60% with 10% molasses solution. Out of 31 strains, 19 strains formed primordia. The eight strains produced more than 140g/1kg in fresh weight. Third, molasses culture media was selected for the mycelial growth. And molasses suitable sugar content and input aeration were around 8Brix% and 0.3~0.6vvm, respectively. The longer the incubation period is, the more dried weight of mycelia increased, but medium volume decreased. Therefore, the best incubation period was 9 to 11 days depending on strains. In the future, research project entitled development of culture system and new variety for stable production of S. latifolia will be considered as a new item.

  • PDF

Climate change and resilience of biocontrol agents for mycotoxin control

  • Magan, Naresh;Medina, Angel
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.41-41
    • /
    • 2018
  • There has been an impetus in the development of biocontrol agents (BCAs) with the removal of a number of chemical compounds in the market, especially in the European Union. This has been a major driver in the development of Integrated Pest Management systems (IPM) for both pest and disease control. For control of mycotoxigenic fungi, there is interest in both control of colonization and more importantly toxin contamination of staple food commodities. Thus the relative inoculum potential of biocontrol agent vs the toxigenic specie sis important. The major bottlenecks in the production and development of formulations of biocontrol agents are the resilience of the strains, inoculum quality and formulation with effective field efficacy. It was recently been shown for mycotoxigenic fungi such as Aspergillus flavus, under extreme climate change conditions, growth is not affected although there may be a stimulation of aflatoxin production. Thus, the development of resilient biocontrol strains which can may have conserved control efficacy but have the necessary resilience becomes critical form a food security point of view. Indeed, under predicted climate change scenarios the diversity of pests and fungal diseases are expected to have profound impacts on food security. Thus, when examining the identification of potential biocontrol strains, production and formulation it is critical that the resilience to CC environmental factors are included and quantified. The problems in relation to the physiological competence and the relative humidity range over which efficacy can occur, especially pre-harvest may be increase under climate change conditions. We have examined the efficacy of atoxigenic strains of A. flavus and Clanostachys rosea and other candidates for control of A. flavus and aflatoxin contamination of maize, and for Fusarium verticillioides and fumonisin toxin control. We have also examined the potential use of fluidized-bed drying, nanoparticles/nanospheres and encapsulation approaches to enhance the potential for the production of resilient biocontrol formulations. The objective being the delivery of biocontrol efficacy under extreme interacting climatic conditions. The potential impact of climate change factors on the efficacy of biocontrol of fungal diseases and mycotoxins are discussed.

  • PDF

Diversity and distribution of mating types in Lentinula edodes and mating type preference in domesticated strains

  • Ha, Byeong-Suk;Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.37-37
    • /
    • 2018
  • Mating type of Lentinula edodes is determined by two unlinked genetic loci, A and B. To better understand mating behavior of L. edodes, we investigated variations in mating type genes in129 dikaryotic strains collected from East Asia. Through sequence analysis of A locus, we discovered that hypervariable region spanning N-term of HD2-intergenic region-N-term of HD1 could represent A mating type. Mating and hypervariable region analyses revealed 70 unique A mating types: 27 from 98 cultivated strains, 53 from 31 wild strains, and 10 commonly found. It was also revealed that only a few A mating type alleles such as A1, A4, A5, and A7 were prevalent in cultivated strains. Contrarily, A mating type in wild strains was highly diverse: 23 unique A alleles were discovered in small mountainous area in Korean peninsula, suggesting rapid evolution of A mating type in nature. The B locus was assessed by allelic variations in pheromone (PHB) and pheromone receptor (RCB) pairs which constituted subloci Ba and Bb. Sequence analyses and mating assay revealed 5 alleles of RCB1 with 9 associated PHBs in Ba sublocus and 3 alleles of RCB2 with 5 associated PHBs in Bb sublocus. Each RCB was primarily associated with two PHBs. Each PHB-RCB pair was always discovered as a distinct unit. This allowed us to propose 15 B mating types via combinations of five Ba and three Bb subloci. Further investigation on 129 strains confirmed that the B locus, unlike the A locus, was indeed restricted to 15 mating types. Thus, the total number of mating types became 1,050 in L. edodes through a combination of 70 A and 15 B. This number will further increase because of rapid diversification of A mating type. Our findings provide a comprehensive and practical knowledge on mating behaviors of L. edodes.

  • PDF

The Lichen Flora of Oases of Continental Antarctic, and the Ecological Adaptations of Antarctic Lichens

  • Andreev, Mikhail
    • 한국균학회소식:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.24-28
    • /
    • 2006
  • Author have studies lichen flora of the most important ice-free areas of Continental Antarctic: Bunger Hills, and the vicinity of Prudz Bay (Larsemann Hills, and Radok Lake in Prince Charles Mountains). Totally 44 lichen species from 22 genera were reported for Bunger Hills and 50 lichen species from 22 genera and 10 families: Acarosporaceae, Lecanoraceae, Lecideaceae, Parmeliaceae, Pertusariaceae, Physciaceae, Rhizocarpaceae, Stereocaulaceae, Theloschistaceae, and Umbilicariaceaewere reported for the Prudz Bay Region. 20 lichen species were found in the region for the first time. Phytogeographic analysis indicated a relatively high proportion of species with bipolar distribution - about 50% of recorded lichen species. About 30% of lichens normally don't extend into maritime zone occurring in continental Antarctic only. The most common lichen families in the region are Buelliaceae, Lecanoraceae and Teloschistaceae. The water supply and not a temperature is the critical factor for lichens in the Continental Antarctic. Moisture appears to be supplied for lichens not only from snow-melt water but mainly from air. In Maritime Antarctic, due to high air humidity macrolichens form communities everywhere (Himantormia, Usnea and Umbilicaria). In oases of Continental Antarctic extensive sites are lacking in lichen cover, even if the ground is normally snow free. Lichens occur at humid sites with moisture which were brought by winds over the ice cap and poorly developed or absent in dry areas. Of particular significance for lichens are substrate characteristics, animals influence and salinity brought by wind in coastal areas. Most rich lichen vegetation developed in oases around nests of snow petrels, where the melt water is enriched by nutrients. In contrast, the most pure vegetation is on mobile sand and gravel and in salted coastal habitats.

  • PDF