• Title/Summary/Keyword: 소셜 카테고리

Search Result 41, Processing Time 0.03 seconds

Location Recommendation System based on LBSNS (LBSNS 기반 장소 추천 시스템)

  • Jung, Ku-Imm;Ahn, Byung-Ik;Kim, Jeong-Joon;Han, Ki-Joon
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.277-287
    • /
    • 2014
  • In LBSNS(Location-based Social Network Service), users can share locations and communicate with others by using check-in data. The check-in data consists of POI name, category, coordinate and address of locations, nickname of users, evaluating grade of locations, related article/photo/video, and etc. If you analyze the check-in data from the location-based social network service in accordance with your situation, you can provide various customized services. Therefore, In this paper, we develop a location recommendation system based on LBSNS that can utilize the check-in data efficiently. This system analyzes the location category of the check-in data, determines the weighted value of it, and finds out the similarity between users by using the Pearson correlation coefficient. Also, it obtains the preference score of recommended locations by using the collaborated filtering algorithm and then, finds out the distance score by applying the Euclidean's algorithm to the recommended locations and the current users' locations. Finally, it recommends appropriate locations by applying the weighted value to the preference score and the distance score. In addition, this paper approved excellence of the proposed system throughout the experiment using real data.

A Study on Political Attitude Estimation of Korean OSN Users (온라인 소셜네트워크를 통한 한국인의 정치성향 예측 기법의 연구)

  • Wijaya, Muhammad Eka;Ahn, Heejune
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-11
    • /
    • 2016
  • Recently numerous studies are conducted to estimate the human personality from the online social activities. This paper develops a comprehensive model for political attitude estimation leveraging the Facebook Like information of the users. We designed a Facebook Crawler that efficiently collects data overcoming the difficulties in crawling Ajax enabled Facebook pages. We show that the category level selection can reduce the data analysis complexity utilizing the sparsity of the huge like-attitude matrix. In the Korean Facebook users' context, only 28 criteria (3% of the total) can estimate the political polarity of the user with high accuracy (AUC of 0.82).

A Visualization Tool for Job Mentor Network System (취업 멘토 네트워크 시스템 시각화 도구)

  • Im, Bo-Mi;Jang, In-Seon;Ji, Eun-Hye;Kim, Seungtae;Park, Uchang
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.103-105
    • /
    • 2010
  • 소셜 네트워크는 인적 네트워크을 통하여 정보를 공유하거나 커뮤니티를 구성하는 시스템이다. 소셜 네트워크가 많이 활성화 되고 있지만 구성원간의 연관성 파악, 직접적 관계가 없던 구성원간의 연결 등을 통하여 관계를 확대해 나가는 것을 돕는 시스템은 아직 부족하다. 이에 본 연구에서는 대학의 취업 네트워크를 2차원 화면에 시각화를 통하여 취업 멘토 네트워크 시스템을 개발하였다. 취업 멘토 네트워크 시스템은 취업 졸업생 멘토의 출신학교, 취업회사, 동아리, 학과, 출신고등학교에 대한 정보 네트워크를 구축하고, 재학생 멘티가 이를 활용하기 위한 관심있는 멘토 필터링, 카테고리 검색 등의 기능을 제공한다. 또한 자바 애플릿을 이용해 웹상에서 가능함으로써 시공간적인 검색제약을 없앴다. 완성된 시스템은 졸업생 멘토와 재학생 멘티의 관계 형성을 효과적으로 지원한다.

Trajectory Prediction by Using Contextual LSTM based Variational AutoEncoder (Contextual LSTM 기반 변분 오토인코더를 이용한 이동 경로 예측)

  • Cho, KwangHo;Cha, JaeHyuk
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.587-590
    • /
    • 2020
  • 스마트폰, GPS 장비, 위치 기반 소셜네트워크의 발달로 방대한 이동 경로 데이터 수집이 가능하게 됐다. 이를 통해 다양한 분야에서 GPS 데이터를 가지고 사람의 이동성을 분석하고 POI를 예측하는 기회가 많아졌다. 실생활에서 사람의 이동성은 다양한 상황에 영향을 받지만, 실제 GPS 데이터는 위치, 시간 정보의 수준이다. 따라서 다양한 상황을 내재하는 정보가 사람의 이동성 분석과 POI 예측에 필요하다. 본 논문에서는 POI의 순위, 사용자의 POI 활동, 카테고리 선호도 같은 맥락적 특징을 이용하여 이에 관련된 상황에 맞는 POI 시퀀스를 예측하는 Contextual LSTM 기반 딥러닝 기법을 제안한다. Contextual LSTM은 사람의 이동성에 영향을 주는 시퀀스의 맥락적 특징을 모델에 통합하기 위해 LSTM을 확장한다. 제안된 기법은 HITS 알고리즘과 여러 제약조건 기반으로 추출한 맥락적 특징별로 딥 러닝 모델에 통합하여 각각 POI 시퀀스를 검출했으며, 다양한 맥락적 특징에 대해서 공공 데이터와 수집한 데이터로 평가하였다.

What Determines the Success of Reward-based Crowdfunding in the Art and Cultural Projects? (문화예술 분야의 보상형 크라우드펀딩 성공 결정요인: 소셜 커뮤니케이션 활동 효과를 중심으로)

  • Ryu, Changhan;Hyun, Eunjung
    • Review of Culture and Economy
    • /
    • v.21 no.3
    • /
    • pp.31-58
    • /
    • 2018
  • In this study, we empirically investigated the antecedents of crowdfunding success in the arts and cultural field using the case of Tumblbug in Korea. We collected data on 494 projects listed on Tumblebug in the arts and culture category that includes feature film, documentary, short film, animation, and Web series, as of June 2018. We analyzed the factors associated with the final amount raised via crowdfunding on Tumblbug using the hierarchical regression method. We find that the social capital accumulated by a focal entrepreneur (i.e., the proposer/designer of a focal project) through prior participation in other related projects and social communication activities carried out during the funding period, respectively, have positive effects on the final amount raised. More interestingly, we also find that the intensity of social communication plays a central role in the funding success of arts and culture-related projects by supplementing the lack of the entrepreneur's social capital and the reward features including a given project.

Analyzing the Effect of Characteristics of Dictionary on the Accuracy of Document Classifiers (용어 사전의 특성이 문서 분류 정확도에 미치는 영향 연구)

  • Jung, Haegang;Kim, Namgyu
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.41-62
    • /
    • 2018
  • As the volume of unstructured data increases through various social media, Internet news articles, and blogs, the importance of text analysis and the studies are increasing. Since text analysis is mostly performed on a specific domain or topic, the importance of constructing and applying a domain-specific dictionary has been increased. The quality of dictionary has a direct impact on the results of the unstructured data analysis and it is much more important since it present a perspective of analysis. In the literature, most studies on text analysis has emphasized the importance of dictionaries to acquire clean and high quality results. However, unfortunately, a rigorous verification of the effects of dictionaries has not been studied, even if it is already known as the most essential factor of text analysis. In this paper, we generate three dictionaries in various ways from 39,800 news articles and analyze and verify the effect each dictionary on the accuracy of document classification by defining the concept of Intrinsic Rate. 1) A batch construction method which is building a dictionary based on the frequency of terms in the entire documents 2) A method of extracting the terms by category and integrating the terms 3) A method of extracting the features according to each category and integrating them. We compared accuracy of three artificial neural network-based document classifiers to evaluate the quality of dictionaries. As a result of the experiment, the accuracy tend to increase when the "Intrinsic Rate" is high and we found the possibility to improve accuracy of document classification by increasing the intrinsic rate of the dictionary.

Instagram image classification with Deep Learning (딥러닝을 이용한 인스타그램 이미지 분류)

  • Jeong, Nokwon;Cho, Soosun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.61-67
    • /
    • 2017
  • In this paper we introduce two experimental results from classification of Instagram images and some valuable lessons from them. We have tried some experiments for evaluating the competitive power of Convolutional Neural Network(CNN) in classification of real social network images such as Instagram images. We used AlexNet and ResNet, which showed the most outstanding capabilities in ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2012 and 2015, respectively. And we used 240 Instagram images and 12 pre-defined categories for classifying social network images. Also, we performed fine-tuning using Inception V3 model, and compared those results. In the results of four cases of AlexNet, ResNet, Inception V3 and fine-tuned Inception V3, the Top-1 error rates were 49.58%, 40.42%, 30.42%, and 5.00%. And the Top-5 error rates were 35.42%, 25.00%, 20.83%, and 0.00% respectively.

The Analysis of the Recent News on Domestic Drought Situation by National Drought Information-Analysis System (국가가뭄정보분석시스템을 활용한 최근 가뭄관련 언론현황 분석 및 고찰)

  • Lee, Ho Sun;Chun, Gun Il;Park, Jae Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.340-340
    • /
    • 2017
  • 최근 전 세계적으로 기후변화로 인한 가뭄이 빈번히 발생하고 있으며 우리나라도 '14~'15년 장기화된 가뭄으로 인해 많은 어려움을 겪었다. 이러한 가뭄은 비교적 느린 속도로 진행되고 그 영향이 복잡하게 나타나기 때문에 적절한 사전대응이 이루어지지 않으면 상당한 피해를 겪게 된다. 최근 기존 수자원 정보의 수집과 분석을 탈피해서 다른 사회 시스템과의 연계 추진하는 빅데이터 개념의 적용시도가 이루어지고 있다. K-water 국가가뭄정보분석센터에서는 가뭄의 사전인지와 영향평가의 보조적인 수단으로서 뉴스를 활용하는 방법론을 도출하고 이를 시스템에 구현하여 적용하여 활용성을 분석하였다. 언론(뉴스)정보는 가뭄의 발생, 영향, 대응 등을 포괄적으로 검색할 수 있도록 가뭄진행 순서에 따라 가뭄징조 및 예측, 가뭄발생, 가뭄영향, 가뭄대응, 가뭄대비 및 해소 관련 5개 카테고리와 이와 관련된 69개 세부 키워드로 구분하고 이를 시스템에 반영하였다. 빅데이터 기능을 적용하여 인터넷 뉴스를 해당키워드를 적용해 자동으로 수집할 수 있도록 하였으며 중복되거나 관련 없는 뉴스를 제외하고 이를 다시 발생지역으로 공간 구분하여 GIG 맵에 표출될 수 있도록 구축하였다. 구축된 시스템을 활용하여 '16년을 대상으로 수집된 총 448건의 뉴스자료를 분석한 결과 시스템에 구축되어 있는 '16년 용수공급체계를 반영한 가뭄평가결과와 발생위치, 발생시기, 피해내용 등이 '16년 물수급 현황을 잘 나타내는 것으로 나타났다. 향후 센터에서는 뉴스이외에 소셜미디어와 SNS등에서 다양한 가뭄관련정보를 빅데이터 수집방식에 의해 확보하고 이를 가뭄인자와 영향평가에 대한 참고자료로서 활용하기 위한 방안과 시스템 적용을 통한 검증을 지속적으로 진행할 예정이다.

  • PDF

A study on Survive and Acquisition for YouTube Partnership of Entry YouTubers using Machine Learning Classification Technique (머신러닝 분류기법을 활용한 신생 유튜버의 생존 및 수익창출에 관한 연구)

  • Hoik Kim;Han-Min Kim
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.57-76
    • /
    • 2023
  • This study classifies the success of creators and YouTubers who have created channels on YouTube recently, which is the most influential digital platform. Based on the actual information disclosure of YouTubers who are in the field of science and technology category, video upload cycle, video length, number of selectable multilingual subtitles, and information from other social network channels that are being operated, the success of YouTubers using machine learning was classified and analyzed, which is the closest to the YouTube revenue structure. Our findings showed that neural network algorithm provided the best performance to predict the success or failure of YouTubers. In addition, our five factors contributed to improve the performance of the classification. This study has implications in suggesting various approaches to new individual entrepreneurs who want to start YouTube, influencers who are currently operating YouTube, and companies who want to utilize these digital platforms. We discuss the future direction of utilizing digital platforms.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.