• 제목/요약/키워드: 소셜 빅데이터 분석

검색결과 330건 처리시간 0.028초

소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성 (Automatic Generation of Issue Analysis Report Based on Social Big Data Mining)

  • 허정;이충희;오효정;윤여찬;김현기;조요한;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.553-564
    • /
    • 2014
  • 본 논문은 지금까지의 소셜미디어 분석과 분석보고서 생성의 세 가지 문제점을 해결하기 위해서 소셜 빅데이터 마이닝에 기반한 이슈분석보고서 자동 생성 시스템을 제안한다. 세 가지 문제점은 분석의 고립성, 전문가의 주관성과 고비용에 기인한 정보의 폐쇄성이다. 시스템은 자연언어 질의분석, 이슈분석, 소셜 빅데이터 분석, 소셜 빅데이터 상관성분석과 자동 보고서 생성으로 구성된다. 생성된 보고서의 유용성을 평가하기 위해, 본 논문에서는 리커트척도를 사용하였고, 빅데이터 분석 전문가 2명이 평가하였다. 평가결과는 리커트 척도 평가에서 보고서의 품질이 비교적 유용하고 신뢰할 수 있는 것으로 평가되었다. 보고서 생성의 저비용, 소셜 빅데이터의 상관성 분석과 소셜 빅데이터 분석의 객관성 때문에, 제안된 시스템이 소셜 빅데이터 분석의 대중화를 선도할 것으로 기대된다.

4차 산업혁명의 스포츠 현장 적용을 위한 탐색적 연구: 소셜 빅데이터 활용 방안을 중심으로 (The Exploratory Study for the Application of the Sports Field in the Fourth Industrial Revolution: Focus on the Social Big Data)

  • 박성건;황영찬
    • 한국체육학회지인문사회과학편
    • /
    • 제56권4호
    • /
    • pp.397-413
    • /
    • 2017
  • 본 연구의 목적은 4차 산업혁명의 스포츠 현장 적용을 위한 탐색적 연구를 통하여 스포츠 업계 종사자들이 소셜 빅데이터를 직접 다루고 활용하기 위한 사례를 소개하고, 관련 정보를 제공하는 것이다. 수집된 문헌은 국내 외 학술 DB로부터 '소셜 빅데이터', '스포츠'와 관련된 문헌 302편이며, 분석된 문헌은 86편(국내 28편, 국외 58편)이다. 연구 결과, 스포츠산업 분야에 적용 가능한 소셜 빅데이터 분석 연구는 1) 스포츠 팬들의 관심사 및 스포츠 이벤트에 대한 주요 이슈 분석, 2) 미디어스포츠 인게이지먼트 연구, 3) 사용자 감성을 이용한 경기 승패 예측, 4) 프로선수 연봉 산정 모델 개발, 5) 연구동향 분석 등이 될 수 있다. 결론적으로, 스포츠산업 경영 분야에서 소셜 빅데이터 분석 기술은 다양하게 활용될 수 있기 때문에, 스포츠 업계 종사자들이 소셜 빅데이터 분석 기술을 직접 다루고 이를 활용하기 위해서는 IT기술에 대한 선행 학습, 연구수행을 통한 노하우 습득, 그리고 융합적인 사고의 전환이 필요하다.

빅데이터 분석을 활용한 4차 산업혁명 키워드에 대한 통찰 (A Insight Study on Keyword of 4th Industrial Revolution Utilizing Big Data)

  • 남수태;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.153-155
    • /
    • 2017
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 가치 창출을 위한 노력을 기하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석도구인 소셜 매트릭스를 활용하여 2017년 5월, 1개월 시점을 설정하고 "4차 산업혁명" 키워드에 대한 소비자들의 인식들을 살펴보았다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 4차 산업혁명 키워드에 대한 연관 검색어 1위는 "후보"가 빈도수(7,613)인 것으로 나타났다. 둘째, 연관 검색어 2위는 "안철수"가 빈도수(7,297), 3위는 "문재인"이 빈도수(5,183)로 각각 나타났다. 다음으로 "4차 산업혁명" 키워드에 대한 검색어 긍정적 여론 빈도수 1위는 새로운(895)으로 나타났고, 부정적 여론 빈도수 1위는 위기(516)가 차지하였다. 이러한 결과 분석결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF

빅데이터 분석을 활용한 인공지능 인식에 관한 연구 (A Study on Recognition of Artificial Intelligence Utilizing Big Data Analysis)

  • 남수태;김도관;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.129-130
    • /
    • 2018
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터 분석을 2011년 이래로 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 새로운 가치 창출을 위해 노력을 하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석 도구인 소셜 매트릭스를 활용하여 분석하였다. 2018년 5월 19일 시점 1개월 기간을 설정하여 "인공지능" 키워드에 대한 대중들의 인식을 분석하였다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 인공지능에 대한 1위 연관 검색어는 중국(4,122)인 것으로 나타났다. 결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF

소셜 데이터에서 재난 사건 추출을 위한 사용자 행동 및 시간 분석을 반영한 토픽 모델

  • 촐몽 바야르;이경순
    • 정보와 통신
    • /
    • 제34권6호
    • /
    • pp.43-50
    • /
    • 2017
  • 본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.

A Development Method of Framework for Collecting, Extracting, and Classifying Social Contents

  • Cho, Eun-Sook
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.163-170
    • /
    • 2021
  • 빅데이터가 여러 분야에서 다양하게 접목됨에 따라 빅데이터 시장이 하드웨어로부터 시작해서 서비스 소프트웨어 부문으로 확장되고 있다. 특히 빅데이터 의미 파악 및 이해 능력, 분석 결과 등 총체적이고 직관적인 시각화를 위하여 애플리케이션을 제공하는 거대 플랫폼 시장으로 확대되고 있다. 그 중에서 SNS(Social Network Service) 등과 같은 소셜 미디어를 활용한 빅데이터 추출 및 분석에 대한 수요가 기업 뿐만 아니라 개인에 이르기까지 매우 활발히 진행되고 있다. 그러나 이처럼 사용자 트렌드 분석과 마케팅을 위한 소셜 미디어 데이터의 수집 및 분석에 대한 많은 수요에도 불구하고, 다양한 소셜 미디어 서비스 인터페이스의 이질성으로 인한 동적 연동의 어려움과 소프트웨어 플랫폼 구축 및 운영의 복잡성을 해결하기 위한 연구가 미흡한 상태이다. 따라서 본 논문에서는 소셜 미디어 데이터의 수집에서 추출 및 분류에 이르는 과정을 하나로 통합하여 운영할 수 있는 프레임워크를 개발하는 방법에 대해 제시한다. 제시된 프레임워크는 이질적인 소셜 미디어 데이터 수집 채널의 문제를 어댑터 패턴을 통해 해결하고, 의미 연관성 기반 추출 기법과 주제 연관성 기반 분류 기법을 통해 소셜 토픽 추출과 분류의 정확성을 높였다.

소셜 미디어 빅 데이터 분석을 통한 이슈 감지 및 예측에 관한 연구 (A Study on the Issue detected and Forecast by Analysis of Social Media Big Data)

  • 강민식;송은지
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.629-630
    • /
    • 2014
  • 서비스 산업에 있어 기업 간의 경쟁이 날로 심화되어 가고 있는 가운데 효율적인 경영을 위해서는 시시각각으로 변하는 고객의 니즈를 파악하기 위해 그 어느 때 보다도 고객피드백이 필요한 시대이다. 최근 기업에서는 다양한 고객의 목소리가 담겨 있는 소셜 미디어상의 빅 데이터를 이용하여 고객의 피드백을 파악하려는 노력을 하고 있다. 따라서 모바일 스마트 혁명의 핵심 자원인 빅 데이터를 어떻게 분석, 활용 할 것인지 많은 기업들의 관심이 집중되고 있다. 본 연구에서는 이러한 소셜 빅 데이터를 분석하는 기술로서 최근 이슈를 감지하고 예측하는 방법을 제안하다. 이것은 기관이나 기업 등 분석대상과 관련된 소셜 데이터 자체를 분석하거나 그 외 관련 데이터와 연관 관계 분석 등 여러 가지 방법을 조합하여 부정적 이슈 등의 탐지가 가능하다.

  • PDF

소셜 빅 데이터를 이용한 이슈 감지 사례분석 (A Case Study of the Issue detected Analysis on Social Media Big Data)

  • 송은지;강민식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.682-683
    • /
    • 2014
  • 최근 IT업체들은 온라인 상에서 소비자들이 평소에 쏟아내는 의견들을 수집, 축적해서, 원하는 키워드를 중심으로 내용을 분석함으로써, 특정 주제에 대해 어떤 여론이 형성되고 있으며, 여론이 어떻게 전파되고 있는지 경로를 파악할 수 있는 소셜 빅데이터 분석 툴을 경쟁적으로 개발하고 있다. 본 논문에서는 소셜 빅 데이터를 분석함에 있어 이슈를 감지하고 예측하는 기술을 실제 사례에 적용하여 분석한 결과를 고찰해 보고자 한다. 소셜 미디어 데이터 패턴을 비교 분석하고 부정이슈 감지를 위해 부정 여론을 확산시키는데 영향을 미치는 내용과 작성자를 독립변수로 하고, 평균 이슈 도달 시간 및 속도를 종속변수로 정의한다. 부정 여론 형성의 영향력은 트윗수, 리트윗 수를 기준으로 이슈 감지한다. 분석결과 전체 트윗 중 리트윗 메시지가 큰 비중 차지하고 이슈에 대한 버즈가 증가할수록 리트윗 비중이 증가하였으며 크게 확산될 때는 리트윗량이 크게 증가하여 짧은 시간 안에 넓게 확산하였다.

  • PDF

Social Network Big Data 분석 기법과 응용

  • 최병진;황용근;정교민
    • 정보와 통신
    • /
    • 제31권11호
    • /
    • pp.46-51
    • /
    • 2014
  • 최근 정보통신 기술의 발전과 더불어 급성장 중인 소셜 네트워크는 개인 혹은 집단간의 실제 사회적 관계를 네트워크 구조로 반영하고 있다. 소셜 네트워크를의 구조를 보다 정확하게 이해하고 소셜 네트워크 내에서 정보가 전파되는 패턴을 파악하기 위해 소셜 네트워크를 수학적으로 모델링하고, 이를 응용하여 소셜 네트워크 빅 데이터를 분석하는 다양한 연구가 이루어지고 있다. 본고에서는 소셜 네트워크의 구조 분석과 정보 확산 패턴 파악에 관한 주요 연구 사례들을 소개하고, 특히 소셜 빅 데이터 분석과 관련된 연구 주제 및 응용 사례들을 살펴보고자 한다.

소셜네트워크서비스 빅데이터 분석을 위한 연구문제 설정과 통계적 제 문제-융합적 관점 (Doing social big data analytics: A reflection on research question, data format, and statistical test-Convergent aspects)

  • 박한우;최경호
    • 디지털융복합연구
    • /
    • 제14권12호
    • /
    • pp.591-597
    • /
    • 2016
  • 타당한 연구 수행을 위해서는 방법론이 중요하다. 소셜네트워크서비스로부터 수집되는 데이터를 대상으로 하는 소셜 빅데이터 연구는 최근 들어 새롭게 부각되는 연구이지만 아직 이에 합당한 연구방법이 충분하지 않은 실정이다. 이에 본 연구에서는 소셜 빅데이터 분석에 합당한 연구방법론 개발에 앞서, 연구문제의 설정에 대하여 체계적으로 정리하고 질문의 기본 유형을 제시하고자 한다. 그리고 제시되는 6가지 기본 유형에 따른 데이터 형태를 살펴보고자 한다. 나아가 SNS로부터 수집되는 빅데이터 분석과 관련된 통계적인 제 문제에 대해서도 고찰해 보도록 하겠다. 본 연구의 결과는 향후 관련 연구자들이 데이터 유형에 맞는 올바른 연구문제를 수립하고 분석함으로써 타당한 정보를 도출하는데 도움이 될 것으로 사료된다.