• 제목/요약/키워드: 소셜 리뷰

검색결과 55건 처리시간 0.022초

Social Big Data Analysis for Franchise Stores

  • Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.39-46
    • /
    • 2021
  • 프랜차이즈 스토어를 대상으로 소셜 빅데이터 분석을 수행할 경우, 프랜차이즈에 속한 여러 분점의 리뷰들이 함께 수집될 수 있어 분석 결과가 왜곡될 수 있다. 이 경우 분석 정확도를 높이기 위해서는 분석 대상이 아닌 타 분점의 리뷰들을 적절히 필터링할 수 있어야 한다. 본 논문에서는 프랜차이즈 스토어들의 특성을 반영한 소셜 빅데이터 분석 방법을 제안한다. 제안 방법은 검색어 설정 방법과 리뷰 필터링 방법을 포함한다. 검색어 설정을 위해, 소상공인진흥공단에서 제공하는 공공데이터를 기반으로 검색에 필요한 지역명을 추출한다. 그리고 리뷰 필터링을 위해, 네이버 및 카카오 등에서 제공하는 검색 API를 이용하여 프랜차이즈 분점 정보를 알아내고, 분석 대상이 아닌 타 분점의 리뷰들을 필터링하는데 이용한다. 제안 방법의 검증을 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법의 리뷰 필터링 정확도는 평균 93.6%로 조사되었다.

Improving Accuracy of Noise Review Filtering for Places with Insufficient Training Data

  • Hyeon Gyu Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.19-27
    • /
    • 2023
  • 소셜 리뷰를 수집하는 과정에서 주어진 검색어와 상관없는 노이즈 리뷰가 검색 결과에 다수 포함될 수 있으며, 이들을 필터링하기 위해 기계 학습이 이용될 수 있다. 그러나 분석하고자 하는 대상의 리뷰 수가 부족한 경우, 학습 데이터 부족으로 인한 정확도 저하 문제가 발생할 수 있다. 본 논문에서는 리뷰 수가 부족한 플레이스를 대상으로 노이즈 리뷰 필터링의 정확도를 높이기 위한 지도 학습 방법을 소개한다. 제안 방법에서는 개별 플레이스 단위로 학습을 수행하지 않고, 특성이 유사한 여러 플레이스를 그룹으로 묶어 학습을 수행한다. 학습을 통해 얻은 분류기는 그룹에 속한 임의의 플레이스에 공통으로 적용함으로써 학습 데이터 부족 문제를 해결하고자 하였다. 제안 방법의 검증을 위해, LSTM과 BERT를 이용하여 노이즈 리뷰 필터링 모델을 구현하고, 온라인에서 수집된 실제 데이터를 활용한 실험을 통해 필터링 정확도를 체크하였다. 실험 결과, 제안 방법의 정확도는 평균 92.4% 수준이었으며, 리뷰 수가 100개 미만인 플레이스를 대상으로 할 경우 87.5%의 정확도를 제공하였다.

Efficient Keyword Extraction from Social Big Data Based on Cohesion Scoring

  • Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권10호
    • /
    • pp.87-94
    • /
    • 2020
  • 블로그나 SNS 피드 등의 소셜 리뷰는 고객 관점의 의견이나 불만 사항을 반영한 키워드를 추출하기 위한 목적으로 광범위하게 활용되고 있으며, 최근 트렌드를 반영한 신조어나 고유명사를 포함하는 경우가 많다. 이들 단어는 사전에 포함되어 있지 않아 기존 형태소 분석기가 잘 인지하지 못하는 경우가 많으며, 동시에 상당한 처리 시간이 소요되어 키워드 분석 결과를 실시간으로 제공하는데 어려움이 있다. 본 논문에서는 응집도 점수 개념을 기반으로 소셜 리뷰로부터 키워드를 효율적으로 추출하기 위한 방법을 제안한다. 응집도 점수는 단어의 빈도수를 기반으로 계산되어 별도의 사전이 필요없다는 장점이 있으나, 띄어쓰기가 되지 않은 입력 데이터에 대해서는 정확도가 떨어질 수 있다. 이와 관련하여 본 논문에서는 단어 트리 구조를 이용하여 기존의 응집도 점수 계산 방법을 개선한 알고리즘을 제시한다. 또한 실험을 통해 제안하는 방법이 15.5%의 오류율을 보이는 동시에, 1,000개의 리뷰를 처리하는데 0.008초 정도 소요됨을 확인하였다.

소셜 미디어 앱 리뷰에서의 감성 분석 연구: 인스타그램 중심으로 (Research on Sentiment Analysis in Social Media App Reviews: Focusing on Instagram)

  • 이문기;우위항
    • 감성과학
    • /
    • 제27권1호
    • /
    • pp.69-80
    • /
    • 2024
  • 본 연구는 Google Play에서 수집된 Instagram 사용자 리뷰에 대한 심층 분석을 통해, 이 연구는 애플리케이션의 성능과 사용자 만족도에 대한 중요한 통찰력을 얻고자 한다. 텍스트 마이닝과 감성 분석 기술을 활용하여 사용자 리뷰에 담긴 감성과 의견을 체계적으로 파악하며, 이를 통해 앱의 개선점과 사용자 경험을 깊이 이해하려고 한다. 인스타그램 리뷰가 사용자들의 다양한 경험을 어떻게 반영하는지, 그리고 앱의 장단점을 어떻게 드러내는지를 분석한다. 이를 위해 나이브 베이즈 알고리즘을 사용한 감성 분석을 수행하며, 이 결과는 인스타그램 서비스 개선에 도움이 될 것으로 기대된다. 연구는 또한 개발자들이 사용자 피드백을 더 잘 이해하고 활용하는 데 도움을 주며, 결국 사용자 만족도를 향상시키는 데 기여할 것으로 예상된다. 이 연구는 소셜 미디어 사용 패턴과 사용자 의견의 복잡한 관계를 탐색하고, 이를 통해 더 나은 사용자 경험을 제공하는 방안을 모색한다.

온라인 구전이 영화매출에 미치는 영향: 소유미디어와 획득미디어의 조절효과를 중심으로 (The Effect of Online Word of Mouth on Movie Sales: Moderating Roles of Types of Social Media)

  • 이중원;박철
    • 경영정보학연구
    • /
    • 제21권2호
    • /
    • pp.29-50
    • /
    • 2019
  • 소셜 미디어는 정보원천에 따라 기업이 운영하는 소유미디어(Owned Media)와 고객 등 제3자가 콘텐츠를 생산하며 기업이 통제할 수 없는 획득미디어(Earned Media)로 구분된다. 소셜 미디어 선행연구는 소셜 미디어의 브랜드 관련 콘텐츠가 잠재고객의 브랜드의 인지도를 높이고, 브랜드 태도를 긍정적으로 변화시킴으로써 궁극적으로 매출과 기업성과를 증가시킨다는 논리를 전개하고 있다. 하지만 선행연구는 대부분 소셜 미디어의 정보원천에 따른 미디어 시너지 효과의 차이를 충분히 설명하지 못한다는 한계점이 있다. 소비자는 정보처리 상황에 따라 미디어의 정보를 취사선택할 가능성이 높기 때문에, 통합된 미디어 관리가 매우 중요하다고 할 수 있다. 본 연구의 목적은 리뷰사이트의 온라인 구전과 소셜 미디어 구전(소유미디어, 획득미디어)이 영화 매출에 미치는 영향을 분석하는 것이다. 이를 위해 2017년 개봉한 국내영화의 리뷰 데이터 3,589개를 분석하였다. 연구결과 리뷰사이트 구전과 소셜 미디어 구전(소유미디어, 획득미디어)은 모두 영화 매출에 긍정적인 영향을 미쳤다. 하지만 리뷰사이트 구전을 조절하는 효과는 소유미디어와 획득미디어가 다른 것으로 나타났다.

개체명 인식과 키워드 네트워크 분석을 활용한 약물 이상 반응 탐지 시스템 개발 (Development of Detection of Adverse Drug Reactions based on Named Entity Recognition and Keyword Network Analysis)

  • 이채연;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.670-672
    • /
    • 2023
  • 본 논문에서는 소셜 미디어 약물 리뷰 데이터로부터 약물 이상 반응을 탐지하는 모델인 FC-BERT 를 기반으로 소셜 네트워크 분석을 활용하여 웹 애플리케이션을 구현하였다. FC-BERT 모델을 거쳐 나온 개체명 인식 결과 중에 같은 의미를 가진 서로 다른 약물 이상 반응 표현들을 MedDRA 부작용 사전을 참고하여 하나의 MedDRA 용어로 표준화하여 매핑했다. 해당 결과에 소셜 네트워크 분석 기법을 적용하여 생성한 상위 15 개의 ADR 동시 출현 그래프를 상위 30 개의 워드 클라우드와 함께 시각화하여 보여주는 웹 애플리케이션을 개발했다. 동시 출현 그래프는 가장 많은 리뷰에서 동시에 나타나는 ADR 쌍을 보여준다. 본 논문에서 제안한 웹 애플리케이션은 사람마다 다르게 나타나는 다양한 약물 이상 반응을 사용자에게 좀 더 접근성이 좋게 제공할 수 있을 것으로 보인다.

온라인 고객 리뷰를 활용한 제품 효과 분석 기법 (A Technique for Product Effect Analysis Using Online Customer Reviews)

  • 임영서;이소영;이지나;류보경;김현희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권9호
    • /
    • pp.259-266
    • /
    • 2020
  • 본 논문에서는 온라인 고객 리뷰를 활용하여 건강 보조제, 화장품 등 현재의 상태를 개선하기 위해 사용되는 제품을 대상으로 그 효과를 알아보기 위한 제품 효과 분석 기법을 제시하였다. 제안하는 제품 효과 분석 기법은 블로그 포스팅에 존재하는 광고를 자동 제거하고, 효과 분석을 위한 증상, 효과, 증가, 및 감소로 이루어진 단어 사전을 구축하며, 제안하는 알고리즘을 통해 제품의 효과를 측정한다. 제품 효과 분석 기법을 검증하기 위해 정답 레이블이 존재하는 네이버 쇼핑 리뷰 데이터셋을 대상으로 성능평가를 실시하였으며, 전통적인 긍부정 사전과 RNN 모델과 성능을 비교하였다. 실험 결과, 본 논문에서 제안하는 효과 분석 기법이 다른 두가지 방법보다 정확도가 뛰어남을 보여주었다. 또한, 아토피 피부염, 여드름 치료제에 제안하는 기법을 적용하여 소셜 미디어에 나타난 효과적인 치료법을 소개하였다. 본 논문에서 제시한 알고리즘은 블로그를 포함한 여러 매체의 리뷰로부터 제품의 효과를 점수화할 수 있으므로 다양한 제품군과 소셜 미디어에 적용될 수 있을 것으로 보인다.

Interactive Morphological Analysis to Improve Accuracy of Keyword Extraction Based on Cohesion Scoring

  • Yu, Yang Woo;Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.145-153
    • /
    • 2020
  • 최근 소셜 빅데이터를 대상으로 한 키워드 분석은 고객 관점의 의견이나 불만 사항을 추출하기 위한 목적으로 광범위하게 활용되고 있다. 이와 관련하여, 이전 연구에서는 키워드 분석의 정확도를 높이기 위해 응집도 점수를 활용한 방법을 제안하였으나, 리뷰의 수가 적을 경우 오류율이 증가하는 문제가 있었다. 본 논문에서는 응집도 점수 기반 알고리즘으로부터 추출된 키워드에 대해 간소화된 형태소 분석 단계를 후처리 형태로 적용함으로써 키워드 추출의 정확도를 개선하고자 하였다. 제안 방법은 입력 데이터가 주어질 때마다 필요한 형태소 분석 규칙을 점증적으로 추가할 수 있도록 지원함으로써, 사전의 크기를 최소화하고 분석의 효율을 높이고자 하였다. 또한 대화형 규칙 입력 시스템을 제공하여 분석 규칙 추가에 드는 노력을 최소화하고자 하였다. 제안 방법을 검증하기 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법을 적용할 경우 오류율이 기존 10%에서 1%로 개선되는 동시에, 5,000개의 리뷰 처리에 450ms가 소요되어 실시간 처리가 가능한 수준임을 확인하였다.

온라인 리뷰 클러스터를 이용한 추천 시스템 성능 향상 (Enhancing the Performance of Recommender Systems Using Online Review Clusters)

  • 노기섭;오하영;이재훈
    • 정보과학회 논문지
    • /
    • 제45권2호
    • /
    • pp.126-133
    • /
    • 2018
  • 추천 시스템은 과도한 정보제공으로 인한 정보 수용자의 결정 제약을 극복하고, 정보 제공자에게는 이윤과 평판을 최대화 시킬 수 있는 해결책으로 등장하였다. 추천 시스템은 다양한 접근법으로 구현이 가능하지만, 추천 대상 객체의 리뷰에서 생성되는 다양한 소셜 정보를 적절히 활용하는 방안은 연구되지 못하였다. 본 논문에서는 기존의 접근법과는 다르게 온라인 리뷰에서 생성되는 클러스터 정보를 이용하여 추천 시스템의 성능을 향상시키는 방식을 제안하였다. 제안하는 방식을 구현하고 실제 데이터를 활용하여 실험한 결과 기존의 방식들보다 성능이 월등히 향상됨을 확인하였다.

사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석 (A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce)

  • 채승훈;임재익;강주영
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.53-77
    • /
    • 2015
  • 국내 모바일 커머스 시장은 현재 소셜커머스가 이용자 수 측면에서 오픈마켓을 압도하고 있는 상황이다. 산업계에서는 모바일 시장에서 소셜커머스의 성장에 대해 빠른 모바일 시장진입, 큐레이션 모델 등을 주요 성공요인으로 제시하고 있지만, 이에 대한 학계의 실증적인 연구 및 분석은 아직 미미한 상황이다. 본 연구에서는 사용자 리뷰를 바탕으로 모바일 소셜커머스와 오픈마켓의 사용자 이용경험을 비교 분석하는 탐험적인 연구를 수행하였다. 먼저 본 연구는 구글 플레이에 등록된 국내 소셜커머스 주요 3개 업체와 오픈마켓 주요 3개 업체의 모바일 앱 리뷰를 수집하였다. 본 연구는 LDA 토픽모델링을 통해 1만여건에 달하는 모바일 소셜커머스와 오픈마켓 사용자 리뷰를 지각된 유용성과 지각된 편리성 토픽으로 분류한 뒤 감정분석과 동시출현단어분석을 수행하였다. 이를 통해 본 연구는 국내 모바일 커머스 상에서 오픈마켓 이용자들에 비해 소셜커머스 이용자들이 서비스와 이용편리성 측면에서 더 긍정적인 경험을 하고 있음을 증명하였다. 소셜커머스는 '배송', '쿠폰', '할인'을 중심으로 서비스 측면에서 이용자들에게 긍정적인 이용경험을 이끌어내고 있는 반면, 오픈마켓의 경우 '로그인 안됨', '상세보기 불편', '멈춤'과 같은 기술적 문제 및 불편으로 인한 이용자 불만이 높았다. 이와 같이 본 연구는 사용자 리뷰를 통해 서비스 이용경험을 효과적으로 비교 분석할 수 있는 탐험적인 실증연구법을 제시하였다. 구체적으로 본 연구는 LDA 토픽모델링과 기술수용모형을 통해 사용자 리뷰를 서비스와 기술 토픽으로 분류하여 효과적으로 분석할 수 있는 새로운 방법을 제시하였다는 점에서 의의가 있다. 또한 본 연구의 결과는 향후 소셜커머스와 오픈마켓의 경쟁 및 벤치마킹 전략에 중요하게 활용될 수 있을 것으로 기대된다.