Companies are now using SNS as an online marketing channel and increasingly using it for customer relationship management(CRM). Although companies are actively using social media for marketing, language study brands in South Korea are using social media marketing in widely different ways. Among various components of social media marketing activities, this study analyzed the effects of informativeness, content suitability, and recency of social media marketing on consumers from the perspectives of brand equity and purchase intent. In the results, components of social media marketing activities had significant effects on brand equity, in the order of recency, content suitability, and informativeness. Second, brand equity and consumer purchase intent had significant correlation. And having a child also influenced purchase intent. The results of this study can be used as basic data for research on social media marketing of language schools and propose a theoretical direction for future research in the field as there is little academic data related to the subject.
Proceedings of the Korean Information Science Society Conference
/
2010.06d
/
pp.151-154
/
2010
Proactive Display 시스템은 소셜 웹 콘텐츠를 대형 디스플레이 장치에 표시하여 실세계에서의 상호관계 증진을 도울 수 있는 시스템을 말한다. 지금까지의 Proactive Display 시스템은 개인적인 웹 콘텐츠를 표현할 수 있지만 표현하는 콘텐츠에 초점이 맞춰진 상호활동에 적합한 구조를 가지고 있다. 따라서 웹콘텐츠 소유자에게 초점이 맞춰진 상호활동에서 소셜 웹 콘텐츠를 사용하기 위하여 새로운 구조의 Proactive Display 시스템이 필요하게 되었다. 본 논문에서는 개인적인 소셜 웹 콘텐츠를 소유자가 이동함에 따라 주변에 배치된 대형 디스플레이 장치에 표현하도록 하는 Moving Interests 시스템의 설계에 대하여 기술한다. 설계된 시스템을 통하여 사용자는 외모뿐만 아니라 생각과 관심사 등을 드러내어 자신을 소개하는데 사용할 수 있다. 또한 시스템 사용자의 상대방도 내형적인 정보를 직관적으로 확인하여 시스템 사용자와 상호관계를 맺을 수 있으므로 설계된 시스템을 이용하면 보다 폭 넓고 깊은 상호관계활동을 수행할 수 있다.
Park, Soobin;Choi, Dojin;Yoo, Jaesoo;Bok, Kyoungsoo
The Journal of the Korea Contents Association
/
v.20
no.2
/
pp.96-104
/
2020
As consumers' consumption activities become more active due to the activation of online shopping malls, companies are conducting item trend analyses to boost sales. The existing item trend analysis methods are analyzed by considering only the activities of users in online shopping mall services, making it difficult to identify trends for new items without purchasing history. In this paper, we propose a trend analysis method that combines data in online shopping mall services and social network data to analyze item trends in users and potential customers in shopping malls. The proposed method uses the user's activity logs for in-service data and utilizes hot topics through word set extraction from social network data set to reflect potential users' interests. Finally, the item trend change is detected over time by utilizing the item index and the number of mentions in the social network. We show the superiority of the proposed method through performance evaluations using social network data.
Appearance and rapid growth of the social network services (SNS) have led to changes in the distribution structure of information. Consumers can obtain various information quickly via the social network services and companies make use of a new advertising channel in them. In order to increase the effect of publicity activities through the social network services, development and application of public relations strategy by evaluating and analyzing the results of the activities is required. In this paper, a method for developing a low cost system to evaluate and analyze the results of public relations through the social networks is proposed. The proposed method was verified through building and running a demo system to collect and analyze data in the Facebook fan pages using MySQL database and PHP script on a Linux server.
Social learning is a form to support learners' active engagement and participation in learning with other learners and instructors by using social media. The concept of social learning should be considered beyond the simple use of social media for learning or education. This study aims to apply the understanding of social learning based on the theoretical background of social theories of learning in designing and developing a program for workforce education. As a pilot test, the newly developed social learning program was implemented to 302 employees with the title of 'Innovative Display Strategy for POP". 138 employees successfully completed the social learning course that focuses on delivering contents in time-line based platform, supporting interactions among students, and working effectively through small smart devices in their workplace. The results were derived from three kinds of data-source: learner's log data, their final evaluation score, and the survey to measure the satisfaction about social learning. Finally the implications for social learning were discussed in terms of the program revision and directions for future application.
Many researches about the effect on politics, economics and Sociocultural phenomenon using the social media are in progress. Authors utilized NAVER Trend most famous web browsing service in korea, NAVER Blog social media, NAVER Cafe service and Open Data(API) and also used temperature, humidity index data of Korea Meteorological Administration. This study analyzed a change of the public's emotion in korea using Cluster analysis of vocabulary of taste among its of feelings and senses. K-means clustering was followed by decision of the number of groups which was used Chi-square goodness of fit test and ward analysis. Eight groups was made and it represented sensitive vocabulary. By Discriminant analysis, eight groups decided by Cluster analysis has 98.9% accuracy. The change of the public's emotion has capability to predict people's activity so they can share sensibility and a bond of sympathy developed between them.
소셜 서비스의 확산에 따라 이러닝 분야에서도 소셜러닝이 확산되고 있다. 소셜러닝이 기존 교육과 구별되는 가장 큰 특징은 콘텐츠의 생산과 소비 방법으로, 네트워크를 통해 가치를 전달하고, 다른 사람으로부터 배운다는 것이다. 따라서 소셜미디어 콘텐츠와 소셜네트워크 활동 콘텐츠를 학습객체화하여 함께 이용할 수 있어야 한다고 본다. 이를 위해 본 논문에서는 소셜미디어 콘텐츠를 학습객체화 할 수 있도록 콘텐츠 생성모델 확장 방안을 제안하고자 한다. 소셜자원기반 콘텐츠 생성모델은, 학습객체 정의와 메타데이터 생성모델로 구성된다.
With the development of location-aware technologies and the activation of smart phones, location based social networks(LBSN) have been activated to allow people to easily share their location. In particular, studies on recommending the location of user interests by using the user check-in function in LBSN have been actively conducted. In this paper, we propose a location recommendation scheme considering time and user activities in LBSN. The proposed scheme considers user preference changes over time, local experts, and user interest in rare places. In other words, it uses the check-in history over time and distinguishes the user activity area to identify local experts. It also considers a rare place to give a weight to the user preferred place. It is shown through various performance evaluations that the proposed scheme outperforms the existing schemes.
We describe a novel method for improving the performance of the UCC retrieval using content reputation and user reputation. The UCC retrieval is a part of the information retrieval. The goal of the information retrieval system finds documents what users want, so the goal of the UCC retrieval system tries to find UCCs themselves instead of documents. Unlike the document, the UCC has not enough textual information. Therefore, we try to use the content reputation and the user reputation based on non-textual information to gain improved retrieval performance. We evaluate content reputation using the information of the UCC itself and social activities between users related with UCCs. We evaluate user reputation using individual social activities between users or users and UCCs. We build a network with users and UCCs from social activities, and then we can get the user reputation from the network by graph algorithms. We collect the information of users and UCCs from YouTube and implement two systems using content reputation and user reputation. And then we compare two systems. From the experiment results, we can see that the system using content reputation outperforms than the system using user reputation. This result is expected to use the UCC retrieval in the feature.
"소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.