The purpose of this study was to find out how the importance and satisfaction of social commerce selection factors perceived by social commerce users differ, and how social commerce selection factors affect repurchase intention. A survey was conducted for 17 days from September 1st to September 17th, 2021, and 316 copies were used for empirical analysis. As a result of the analysis, the selection factors of social commerce were divided into six factors: safety, convenience, economy, informativity, collectivity, and SNS relevance. IPA results were in the order of convenience in the first quadrant, relevance and informativity in the second quadrant SNS, collectivity in the third quadrant, stability in the fourth quadrant, and economy. In the relationship between social commerce selection factors and repurchase intention, convenience, economy, safety, and information among social commerce selection factors were found to have a significant influence on repurchase intention. As a result of this study, it was confirmed that if existing social commerce was important at an affordable price, convenience is more important for non-face-to-face commerce in the COVID-19 situation. It is considered important to have a system that can continuously identify and preemptively respond to users' shopping trends through IPA.
Journal of the Korea Fashion and Costume Design Association
/
v.14
no.2
/
pp.63-74
/
2012
The purpose of this study was to find factors affecting satisfaction and intention to re-purchase fashion goods through social commerce. A questionnaire method was applied for 123 women aged from twenties to thirties, with buying experience in fashion goods through social commerce. Independent variables were service quality, fashion shopping orientation, and demographics. Factor analyses and multiple regression methods were used to analyze data. Factor analyses resulted in two factors for service quality and resulted in four factors for fashion shopping orientation. The results of multiple regression analyses showed that convenience & benefits and site layout factors of the service quality had significant impacts on satisfaction in fashion social commerce. Those two service quality factors, demographics like job, and satisfaction were shown significantly important to predict intention to re-purchase fashion goods on social commerce service. Intention to re-purchase was best explained in the model with satisfaction as an independent variable. Meanwhile, shopping orientation factors were not important in any model.
Web 2.0 has affected existing e-commerce and created a new business model of e-commerce, known as social commerce. Social commerce is a subset of e-commerce using social network services and is emerging as an important platform due to increased popularity of social networking services. This study focuses on analyzing the factors that influence the shopping value and intention to repurchase of social commerce users. Based on prior researches, we develop a research model, including individual characteristics of social commerce users (Collectivism, Price Sensitivity, Impulse Buying) and social commerce characteristics (Cost saving, Product Variety, Shopping Convenience). Furthermore, this study proposed the moderating effect of Perceived Security and the relationship between shopping value and intention to repurchase. To empirically validate, the data were collected from 220 social commerce users. The results indicated that individual characteristics (collectivism, price sensitivity, impulse buying) were positively related to hedonic shopping value. In addition, social commerce characteristics (cost saving, shopping convenience) were positively related to utilitarian value. The shopping value(hedonic and utilitarian) had a significant influence on intention to repurchase. The moderating effects of perceived security also was significant. Lastly, the implications for theory and practice are discussed.
With the rapid growth of internet technology, social commerce has played an important and central role in the online shopping area. Thus, we focus on the factors that influence on the adoption of social commerce. This study analyzes the relationship between perceived risk and the shopping motive in social commerce, and investigates whether the shopping motive significantly impact the purchase intention of the social commerce. The perceived risk is comprised of social risk and psychology risk, and the shopping motive is formed from personal motive and social motive. Finally, we analysis a moderating effect of collectivism. The results indicated that the personal motive was negatively affected by the social risk and psychology risk, and social motive was negatively affected by the psychology risk. The social risk and psychology risk had negative effect on the purchase intention, and personal motive and social motive had positive effect on the purchase intention of the social commerce. Finally, low collectivism seems to have the negative effect of the purchase intention by the perceived risk. The implications of integrating perceived risk and shopping motive into the proposed social commerce adoption model are discussed.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.293-295
/
2015
This paper proposed have been the business card information to the computer when creating business card printing agency saved to a file, there is always the risk of personal information leakage. Application file organization information into the card, the name, phone number, email address information, such as is capable of easily accessible because it is not encrypted. This paper proposed it encrypts the information entered on the Business Card application file to automate the process of the card application and simplifying the business card application process minimizes the work of staff and linked directly to the print shop how to automatically delete the print file after the completion of business card printing and research.
Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used
. Past studies to improve CF performance typically used additional information other than users' evaluations such as demographic data. Some studies applied SNA techniques as a new similarity metric. This study is novel in that it used SNA to separate dataset. This study shows that performance of CF can be improved, without any additional information, when SNA techniques are used as proposed. This study has several theoretical and practical implications. This study empirically shows that the characteristics of dataset can affect the performance of CF recommender systems. This helps researchers understand factors affecting performance of CF. This study also opens a door for future studies in the area of applying SNA to CF to analyze characteristics of dataset. In practice, this study provides guidelines to improve performance of CF recommender systems with a simple modification.
Journal of the Korea Society of Computer and Information
/
v.25
no.8
/
pp.159-172
/
2020
Social networking services (SNS) are developing significantly with the Internet and smartphones. It's a friendly social media, but if you think deeply about it, you'll find that it has a variety of faces. It is a communication tool between users, a medium for delivering information, an infrastructure for providing applications, and a community where people with common interests gather. In recent years, business tools, shopping and payment methods are also being swallowed. The influence of the spread of SNS on the real world is also expanding, and the work being dealt with from a sociological perspective is also increasing. Also, if you pay attention to the technical aspects of SNS, it is composed of various technical elements, such as infrastructure that handles large-scale access, user interface that supports comfortable use, and big data analysis to understand people's behavior more deeply. However, I usually use it as usual. However, if you look through SNS, you can see that the situation is surprisingly profound and multifaceted. This study began by looking at the history and current status of SNS and attempted to find its status through comparison with other media. From the point of view of relationship with society, it can be a risk and legal issue when using SNS, such as crimes using bad social media or social media. It is also necessary to comment on the activities on SNS or the guidelines established by the operators. Therefore, various legal issues on SNS will be discussed. Also, as an example of using SNS, I will introduce an example of using SNS in disaster response. From a more technical point of view, you will receive commentary on SNS's network-based technology and SNS's information use, and these articles will help you understand and use SNS safely and help you further utilize or develop SNS.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.47
no.3
/
pp.11-21
/
2010
To aim at improving performance and reflecting user's needs of retrieval, the number of researches has been actively conducted in recent year as the quantity of information and generation of the web pages exceedingly increase. One of alternative approaches can be a tagging system. It makes users be able to provide a representation of metadata including writings, pictures, and movies etc. called tag and be convenient in use of retrieval of internet resources. Tags similar to keywords play a critical role in maintaining target pages. However, they still needs time consuming labors to annotate tags, which sometimes are found to be a hinderance caused by overuse of tagging. In this paper, we present an automatic tagging scheme for a solution of current tagging system conveying drawbacks and inconveniences. To realize the approach, face recognition-based tagging system on SNS is proposed by building a face area detection procedure, linear-based classification and boosting algorithm. The proposed novel approach of tagging service can increase possibilities that utilized SNS more efficiently. Experimental results and performance analysis are shown as well.
The increasing integration of intelligent information technologies within organizational systems has amplified the risk to personal information security. This escalation, in turn, has fueled growing apprehension about an organization's capabilities in safeguarding user data. While Internet users adopt a multifaceted approach in assessing a company's information security, existing research on the multiple dimensions of information security is decidedly sparse. Moreover, there is a conspicuous gap in investigations exploring whether users' evaluations of organizational information security differ across industry types. With an aim to bridge these gaps, our study strives to identify which information security attributes users perceive as most critical and to delve deeper into potential variations in these attributes across different industry sectors. To this end, we conducted a structured survey involving 498 users and utilized the analytic hierarchy process (AHP) to determine the relative significance of various information security attributes. Our results indicate that users place the greatest importance on the technological dimension of information security, followed closely by transparency. In the technological arena, banks and domestic portal providers earned high ratings, while for transparency, banks and governmental agencies stood out. Contrarily, social media providers received the lowest evaluations in both domains. By introducing a multidimensional model of information security attributes and highlighting the relative importance of each in the realm of information security research, this study provides a significant theoretical contribution. Moreover, the practical implications are noteworthy: our findings serve as a foundational resource for Internet service companies to discern the security attributes that demand their attention, thereby facilitating an enhancement of their information security measures.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.5
/
pp.1-7
/
2020
We can build regular customer relationships combining SNS (social networking service) with shopping mall like offline trade. A customer who once purchased is registered as reaular and the relationship continues afterward. The registered regular customer get sthe information about objective product shipment and besides it, he contacts with a story of frams, growth of vegetables, sows to harvests. Consumer can purchase with one click necessary foods as he looks at timeline. Sellers give information about news. discounts to customers. Besides it, food storages, recipes can be given to consumers. The good point here is that selling and promoting can be performed within one account. This is better than link is provided for selling an promoting separately. Like this, besides personal connections using SNS, categorization function gives consumers on line shopping mall service. Once the consumer purchase, he is registered as regular. Besides, the consumers who do not know each other, can share information, suggest products, spread the news.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.