• Title/Summary/Keyword: 소셜네트워크 발견

Search Result 75, Processing Time 0.023 seconds

A study on Survive and Acquisition for YouTube Partnership of Entry YouTubers using Machine Learning Classification Technique (머신러닝 분류기법을 활용한 신생 유튜버의 생존 및 수익창출에 관한 연구)

  • Hoik Kim;Han-Min Kim
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.57-76
    • /
    • 2023
  • This study classifies the success of creators and YouTubers who have created channels on YouTube recently, which is the most influential digital platform. Based on the actual information disclosure of YouTubers who are in the field of science and technology category, video upload cycle, video length, number of selectable multilingual subtitles, and information from other social network channels that are being operated, the success of YouTubers using machine learning was classified and analyzed, which is the closest to the YouTube revenue structure. Our findings showed that neural network algorithm provided the best performance to predict the success or failure of YouTubers. In addition, our five factors contributed to improve the performance of the classification. This study has implications in suggesting various approaches to new individual entrepreneurs who want to start YouTube, influencers who are currently operating YouTube, and companies who want to utilize these digital platforms. We discuss the future direction of utilizing digital platforms.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

Mapping Categories of Heterogeneous Sources Using Text Analytics (텍스트 분석을 통한 이종 매체 카테고리 다중 매핑 방법론)

  • Kim, Dasom;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.193-215
    • /
    • 2016
  • In recent years, the proliferation of diverse social networking services has led users to use many mediums simultaneously depending on their individual purpose and taste. Besides, while collecting information about particular themes, they usually employ various mediums such as social networking services, Internet news, and blogs. However, in terms of management, each document circulated through diverse mediums is placed in different categories on the basis of each source's policy and standards, hindering any attempt to conduct research on a specific category across different kinds of sources. For example, documents containing content on "Application for a foreign travel" can be classified into "Information Technology," "Travel," or "Life and Culture" according to the peculiar standard of each source. Likewise, with different viewpoints of definition and levels of specification for each source, similar categories can be named and structured differently in accordance with each source. To overcome these limitations, this study proposes a plan for conducting category mapping between different sources with various mediums while maintaining the existing category system of the medium as it is. Specifically, by re-classifying individual documents from the viewpoint of diverse sources and storing the result of such a classification as extra attributes, this study proposes a logical layer by which users can search for a specific document from multiple heterogeneous sources with different category names as if they belong to the same source. Besides, by collecting 6,000 articles of news from two Internet news portals, experiments were conducted to compare accuracy among sources, supervised learning and semi-supervised learning, and homogeneous and heterogeneous learning data. It is particularly interesting that in some categories, classifying accuracy of semi-supervised learning using heterogeneous learning data proved to be higher than that of supervised learning and semi-supervised learning, which used homogeneous learning data. This study has the following significances. First, it proposes a logical plan for establishing a system to integrate and manage all the heterogeneous mediums in different classifying systems while maintaining the existing physical classifying system as it is. This study's results particularly exhibit very different classifying accuracies in accordance with the heterogeneity of learning data; this is expected to spur further studies for enhancing the performance of the proposed methodology through the analysis of characteristics by category. In addition, with an increasing demand for search, collection, and analysis of documents from diverse mediums, the scope of the Internet search is not restricted to one medium. However, since each medium has a different categorical structure and name, it is actually very difficult to search for a specific category insofar as encompassing heterogeneous mediums. The proposed methodology is also significant for presenting a plan that enquires into all the documents regarding the standards of the relevant sites' categorical classification when the users select the desired site, while maintaining the existing site's characteristics and structure as it is. This study's proposed methodology needs to be further complemented in the following aspects. First, though only an indirect comparison and evaluation was made on the performance of this proposed methodology, future studies would need to conduct more direct tests on its accuracy. That is, after re-classifying documents of the object source on the basis of the categorical system of the existing source, the extent to which the classification was accurate needs to be verified through evaluation by actual users. In addition, the accuracy in classification needs to be increased by making the methodology more sophisticated. Furthermore, an understanding is required that the characteristics of some categories that showed a rather higher classifying accuracy of heterogeneous semi-supervised learning than that of supervised learning might assist in obtaining heterogeneous documents from diverse mediums and seeking plans that enhance the accuracy of document classification through its usage.

The Study of the Effects of the Enterprise Mobile Social Network Service on User Satisfaction and the Continuous Use Intention (기업 모바일 소셜네트워크서비스 특성요인이 사용자 만족과 지속적 사용의도에 미치는 영향에 관한 연구)

  • Kim, Joon-Hee;Ha, Kyu-Soo
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.135-148
    • /
    • 2012
  • This work is intended to investigate how the factors of enterprise mobile SNS affect user satisfaction and continuous use intention through technology acceptance model proposed by Davis. To achieve the purpose, this researcher explored Information Systems Success model proposed by DeLone & McLean, Technology Acceptance Model proposed by Davis, and Model after Acceptance, and on the basis of the investigation, performed a study. For the data of this work, 9 enterprises, each of which has more than 100 employees and is located in Seoul, were chosen, and a questionnaire survey was conducted on their 276 employees who experienced enterprise mobile SNS. As a data collection tool, a structured self-administered questionnaire was used. For data analysis, SPSS 18.0 and AMOS 18.0 were used for applying Structural Equation modelling. According to the results of this work, three factors of enterprise mobile SNS-systematic factor (system quality, information quality, and service quality), user factor (personal innovation and personal familiarity), social factor (social effects and social interaction)-affected user satisfaction and continuous use intention through perceived availability, perceived easiness, and perceived enjoyment. Also, it was found that the direction of effects matched a theoretical prediction. And, it was revealed that the decision variables and mediating variables significantly affected user satisfaction and continuous use intention. Theoretical and practical meanings were discussed for the study result, and some suggestions were made for the issues of this work and future studies.

Consumer's Negative Brand Rumor Acceptance and Rumor Diffusion (소비자의 부정적 브랜드 루머의 수용과 확산)

  • Lee, Won-jun;Lee, Han-Suk
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.65-96
    • /
    • 2012
  • Brand has received much attention from considerable marketing research. When consumers consume product or services, they are exposed to a lot of brand related stimuli. These contain brand personality, brand experience, brand identity, brand communications and so on. A special kind of new crisis occasionally confronting companies' brand management today is the brand related rumor. An important influence on consumers' purchase decision making is the word-of-mouth spread by other consumers and most decisions are influenced by other's recommendations. In light of this influence, firms have reasonable reason to study and understand consumer-to-consumer communication such as brand rumor. The importance of brand rumor to marketers is increasing as the number of internet user and SNS(social network service) site grows. Due to the development of internet technology, people can spread rumors without the limitation of time, space and place. However relatively few studies have been published in marketing journals and little is known about brand rumors in the marketplace. The study of rumor has a long history in all major social science. But very few studies have dealt with the antecedents and consequences of any kind of brand rumor. Rumor has been generally described as a story or statement in general circulation without proper confirmation or certainty as to fact. And it also can be defined as an unconfirmed proposition, passed along from people to people. Rosnow(1991) claimed that rumors were transmitted because people needed to explain ambiguous and uncertain events and talking about them reduced associated anxiety. Especially negative rumors are believed to have the potential to devastate a company's reputation and relations with customers. From the perspective of marketer, negative rumors are considered harmful and extremely difficult to control in general. It is becoming a threat to a company's sustainability and sometimes leads to negative brand image and loss of customers. Thus there is a growing concern that these negative rumors can damage brands' reputations and lead them to financial disaster too. In this study we aimed to distinguish antecedents of brand rumor transmission and investigate the effects of brand rumor characteristics on rumor spread intention. We also found key components in personal acceptance of brand rumor. In contextualist perspective, we tried to unify the traditional psychological and sociological views. In this unified research approach we defined brand rumor's characteristics based on five major variables that had been found to influence the process of rumor spread intention. The five factors of usefulness, source credibility, message credibility, worry, and vividness, encompass multi level elements of brand rumor. We also selected product involvement as a control variable. To perform the empirical research, imaginary Korean 'Kimch' brand and related contamination rumor was created and proposed. Questionnaires were collected from 178 Korean samples. Data were collected from college students who have been experienced the focal product. College students were regarded as good subjects because they have a tendency to express their opinions in detail. PLS(partial least square) method was adopted to analyze the relations between variables in the equation model. The most widely adopted causal modeling method is LISREL. However it is poorly suited to deal with relatively small data samples and can yield not proper solutions in some cases. PLS has been developed to avoid some of these limitations and provide more reliable results. To test the reliability using SPSS 16 s/w, Cronbach alpha was examined and all the values were appropriate showing alpha values between .802 and .953. Subsequently, confirmatory factor analysis was conducted successfully. And structural equation modeling has been used to analyze the research model using smartPLS(ver. 2.0) s/w. Overall, R2 of adoption of rumor is .476 and R2 of intention of rumor transmission is .218. The overall model showed a satisfactory fit. The empirical results can be summarized as follows. According to the results, the variables of brand rumor characteristic such as source credibility, message credibility, worry, and vividness affect argument strength of rumor. And argument strength of rumor also affects rumor intention. On the other hand, the relationship between perceived usefulness and argument strength of rumor is not significant. The moderating effect of product involvement on the relations between argument strength of rumor and rumor W.O.M intention is not supported neither. Consequently this study suggests some managerial and academic implications. We consider some implications for corporate crisis management planning, PR and brand management. This results show marketers that rumor is a critical factor for managing strong brand assets. Also for researchers, brand rumor should become an important thesis of their interests to understand the relationship between consumer and brand. Recently many brand managers and marketers have focused on the short-term view. They just focused on strengthen the positive brand image. According to this study we suggested that effective brand management requires managing negative brand rumors with a long-term view of marketing decisions.

  • PDF