• Title/Summary/Keyword: 소성 유동

Search Result 315, Processing Time 0.021 seconds

유동성형에서의 연소관 예비성형체 두께별 소성변형 형태

  • 윤수진;이경훈;은일상
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.163-178
    • /
    • 1997
  • 현재 각종 미사일의 추진기관용 연소관을 제작하는데 광범위하게 이용되고 있는 유동성 형공정에 대하여 강소성 구성방정식을 이용 유한요소해석을 수행하였다. 종전의 단일 롤러에 의한 해석과는 달리 3개의 롤러에 의한 연소관의 점진 소성변형을 고려하였으며. 이에 따른 각 룰러의 연소관에 대한 소성변형, 응력분포가 관찰, 분석되었다. 해석 결과 예비성형체의 두께에 따라 소성변형 형태와 그에 따르는 응력분포에 많은 차이가 나는 것으로 밝혀졌다. 또 이상적인 유동성형 공정조건하에서 반경 방향으로의 연소관의 유효 소성변형도는 거의 균일하게 나타났다.

  • PDF

Model for Flow Analysis of Fresh Concrete Using Particle Method with Visco-Plastic Flow Formulation (점소성 유동 입자법에 의한 굳지 않은 콘크리트의 유동해석 모델)

  • Cho, Chang-Geun;Kim, Wha-Jung;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.317-323
    • /
    • 2008
  • In the current study, A model for the flow analysis of fresh and highly flowable concrete has been developed using a particle method, the moving particle semi-implicit (MPS) method. The phenomena on the flow of concrete has been considered as a visco-plastic flow problem, and the basic governing equation of concrete particle dynamics has been based on the Navier-Stokes equation in Lagrangian form and the conservation of mass. In order to formulate a visco-plastic flow constitutive law of fresh concrete, concrete is modeled as a highly viscous material in the state of non-flow and as a visco-plastic material in the state of flow after reaching the yield stress of fresh concrete. A flow test of fresh concrete in the L-box was simulated and the predicted flow was well matched with the experimental result. The developed method was well showed the flow motion of concrete particles because it was formulated to be based on the motion of visco-plastic fluid dynamics.

Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test (유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보))

  • Kim, Young-Suk;Kim, Jin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.718-725
    • /
    • 2016
  • In this study, the plastic flow curve of commercially pure titanium sheet (CP Ti) actively used in the plate heat exchanger etc., was evaluated. The plastic flow curve known as hardening curve is a key factor needed in conducting finite element analyses (FEA) for the forming process of a sheet material. A hydraulic bulge test was performed on the CP Ti sheet and the strain in this test was measured using the DIC method and ARAMIS system. The measured true stress-true strain curve from the hydraulic bulge test (HBT) was compared with that from the tensile test. The measured true stress-true strain curve from the hydraulic bulge test showed stable plastic flow curve over the strain range of 0.7 which cannot be obtained in the case of the uniaxial tensile test. The measured true stress-true strain curve from the hydraulic bulge test can be fitted well by the hardening equation known as the Kim-Tuan model.

The Role of the Plastic Flow Rules in the Elasto-Plastic Formulation of Joint behaviour (절리거동의 탄소성해석에서 소성유동법칙의 역할)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.173-179
    • /
    • 2000
  • The influence of the plastic flow rules on the elasto-plastic behaviour of a discrete joint element was investigated by performing the numerical direct shear tests under both constant normal displacement and normal displacement conditions. The finite interface elements obeying Plesha’s joint constitutive law was used to allow the relative motion of the rock blocks on the joint surface. Realistic results were obtained in the tests adopting the non-associated flow rule, while the associated flow rule overestimated the joint dilation. To overcome the computational drawbacks coming from the non-symmetric element stiffness matrix in the conventional non-associated plasticity, the symmetric formulation of the tangential stiffness matrix for a non-associated joint element was proposed. The symmetric elasto-plastic matrix it derived by assuming an imaginary equivalent joint with associated flow rule which shows the same plastic response as that of original Joint with non-associated flow rule. The validity of the formulation was confirmed through the numerical direct shear tests under constant normal stress condition.

  • PDF

바셀린의 유동특성에 관한 연구

  • 김정화;송기원;이장우;이치호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.342-342
    • /
    • 1994
  • (1) 바셀린은 30 $^{\circ}C$ 이하에서는 항복치를 갖는 의소성 유동거동을 나타내며 이때의 유동특성은 Herschel-Bulkley의 유동모델과 일치한다. (2) 30-50 $^{\circ}C$ 범위에서는 Bingham 모델에 따른 이상 소성 유동 거동을 나타낸다. (3) 50 $^{\circ}C$ 이상의 고온에서는 항복치를 갖지 않는 순수한 Newton 점성유체로 간주할 수 있다. (4) 바셀린의 유동곡선은 전단속도의 단계적 증감에 따라 비가역적인 히스테리시스 루프를 그리나 루프의 면적은 온도 증가에 따라 감소한다. (5) 큰 전단속도로부터 급격히 낮은 전단속도를 부가하면 응력의 평형치에 도달할 때까지 상당한 시간을 필요로 한다. (6) 40 $^{\circ}C$ 이상 온도에서의 유동거동은 시간에 무관하다.

  • PDF

The Plastic Deformation of Combustion Chamber During the Flow Forming Process with Initial Preform Thickness (유동성형에서의 연소관 예비성형체 두께별 소성변형 형태)

  • 윤수진;이경훈;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.89-103
    • /
    • 1997
  • The flow forming process which is one of the technologies to manufacture the various missile propulsion combustion chambers, was analyzed using the rigid plasticity finite element modeling. The numerical analysis was performed using 3 rollers which forms the basic tools for the plastic deformation of the tubes. As a result of this study, the distribution of the plastic strain and the stress are obtained and compared. It was found that there exists a significant difference in the plastic deformation as well as the stress distribution due to the preform initial thickness as a result of these numerical experiments. Moreover, under ideal process condition, flow forming process results in a uniform plastic deformation in the radial direction.

  • PDF

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.

분말단조 해석을 위한 다공질 합금강 프리폼의 고온 업셋

  • Kim, Gi-Tae;Jo, Yun-Ho
    • Transactions of Materials Processing
    • /
    • v.1 no.2
    • /
    • pp.14-19
    • /
    • 1992
  • 분말단조 공정의 해석을 위한 기초연구로서 고용 업셋에 의한 다공질 합금강 프리폼의 치밀화와 소성 변형거동에 관하여 조사하였다. 다공질 프리폼의 소성 유동응력은 용도의 상승에 떠라 감소하였고, 변형속도의 증가에 따라 증가함을 보였다. 또한, 다공질 프리폼의 초기밀도가 더 높을수록 동일한 온도와 하중조건에서 더 높은 치밀화를 보였다. 또한, 밀도변화에 따른 프와송 비를 실험치로 부터 구하였고, 배불림 현상과 체적변화를 고려하여 온도에 따른 진응력-진변형률 관계를 구하였다.

  • PDF