• Title/Summary/Keyword: 소성해석법

Search Result 443, Processing Time 0.033 seconds

A Coupled Analysis of Finite Elements and Boundary Elements for Time Dependent Inelastic Problems (시간의존 비탄성 문제의 유한요소-경계요소 조합에 의한 해석)

  • Kim, Moon Kyum;Huh, Taik Nyung;Jang, Jung Bum;Oh, Se Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.25-34
    • /
    • 1993
  • The long-term behavior, such as in excavation problems of weak medium, can be dealt with by the elasto-viscoplasticity models. In this paper, a combined formulation of elasto-viscoplasticity using boundary elements and finite elements without using internal cells is presented. The domain integral introduced due to the viscoplastic stresses is transformed into a boundary integral applying direct integration in cylindrical coordinates. The results of the developed boundary element analysis are compared with those from the explicit solution and from the finite element analysis. It is observed that the boundary element analysis without internal cells results in some error because of its deficiency in handling the nonlinearity in local stress concentration. Therefore, a coupled analysis of boundary elements and finite elements, in which finite elements are used in the area of stress concentration, is developed. The coupled method is applied to a time dependent inelastic problem with semi-infinite boundaries. It results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed. Thus, it is concluded that the combined analysis may be used for such problems in the effective manner.

  • PDF

Analysis of Superplastic Forming Processes U sing Finite Element Method (유한요소법을 이용한 초소성 성형공정 해석)

  • 홍성석;김민호;김용환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1411-1421
    • /
    • 1995
  • A rigid visco-plastic finite element method has been developed for modeling superplastic forming processes. The optimum pressure-time relationship for a target strain rate and thickness distributions was predicted using two-node line element based on membrane approximation for plane strain and axisymmetric condition. Analysis of superplastic forming was carried out using the developed program and the numerical results were compared to the values available in the literature for plane strain problems. For description of the contact between the dies and sheet, the direct projection method was applied to the complicated problem and the validity of the scheme was tested. Experiments for the various geometries such as hemisphere and cone were performed with the developed forming machine using the calculated optimum pressure-time curves. Comparison between analysis and experiments showed good agreement.

Thermal stress analysis of the turbocharger housing using finite element method (유한요소법에 의한 터보차져 하우징의 열응력 해석)

  • Choi, B.L.;Bang, I.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2011
  • A turbocharger is subjected to rapid temperature changes during thermal cyclic loads. In order to predict the thermo-mechanical failures, it's very important to estimate temperature distributions under the thermal shock test. This paper suggest the finite element techniques with the temperature histories, a constitutive material model and the mechanical constraints to calculate the thermal stresses and plastic strain distributions for the turbine housing. The first step was to develop a simple coupon approach to represent the failure mechanism of the classical design shapes and secondly applied the actual turbocharger to predict and validate the weak locations under the physical engine test.

Thermal Stress Analysis of Refractory of VOD Ladle Using Finite Element Method (유한요소법을 이용한 VOD Ladle 내화물의 열응력 해석)

  • 이순욱;조문규;임종인;함경춘;배성인;송정일
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.193-198
    • /
    • 2001
  • 유한요소법을 이용하여 STS VOD 래들에서 내장 내화물의 재질 및 back filler의 시공 위치에 따른 열응력을 수행하였다. 불소성 내화물의 경우 높은 열전도율에 의해 가동면과 배면(back face)간의 온도구배가 소성품에 비해 감소하였으며 탄성계수도 낮아 발생되는 열응력이 2~4배 낮았다. Back filler는 dolomite 내화물의 열간 팽창을 흡수하기 위해 시공하는 것으로, 상대적으로 낮은 열전도율을 가지고 있기 때문에 back filler의 내부와 외부에 급격한 온도구배가 발생된다. 결과적으로 래들의 내부는 고온을 유지하여 내화물이 팽창이 되고, 외부는 온도가 낮아지므로 수축되어 열응력이 증가하였다.

  • PDF

Investigation of Interaction between Crystal Stress and Intergranular Misorientation using Single Crystal Yield Vertex Analysis (단결정 항복 꼭지점 분석을 이용한 입자간 방위차와 결정응력의 상호작용 조사)

  • Han, Tong-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.269-272
    • /
    • 2011
  • 새로운 재료의 개발과 사용 중인 기존재료의 손상을 판단하기 위해서 변형 중 재료 거동을 정확히 파악하는 것이 중요하다. 하지만, 대부분의 공학 재료는 다결정으로 이루어져 결정 상호작용의 규명이 복잡하여 정밀한 분석이 어렵다. 고에너지 X-ray 회절실험법을 이용한 다결정 고체 거동의 측정기법이 발전함에 따라 해석을 통한 실험법의 검증 및 추가 분석 방법에 대해서도 연구가 활발히 진행되고 있다. 본 연구에서는 특정 결정과 주변 결정 간의 결정간 방위차(intergranular misorientation)의 상호작용에 의한 결정 거동 영향을 조사하였다. 결정간 방위차를 정의하고 결정 응력 방향 변화를 단결정 항복면 꼭지점과 방향과 비교함으로써 결정간 방위차의 변화에 대한 결정 응력 변화를 분석하였다. 소성 발생이 증가함에 따라 결정 응력의 방향은 단결정 항복면 꼭지점으로 이동하지만 결정간 방위차에 의해서 응력 분포가 변화함을 정량적으로 확인하였다.

  • PDF

A Study on Compact Section Requirements for Plate Girder Web Panels with Longitudinal Stiffeners (수평보강재가 설치된 플레이트거더 복부판의 조밀기준에 관한 연구)

  • Lee, Myung Soo;Lee, Doo Sung;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.503-512
    • /
    • 2010
  • In AASHTO LRFD (2007), a compact section is defined as a section in which no premature failure caused by local buckling of web and flange plate or later buckling occurs before the section reaches the plastic moment, Mp. The current AASHTO LRFD (2007) provides the compact section requirement by limiting the web slenderness only for webs without longitudinal stiffeners. The role of longitudinal stiffener is to increase the web buckling strength caused flexure. Although a web does not satisfy the compactness requirement without longitudinal stiffeners, the web buckling can be prevented by use of valid longitudinal stiffeners. Therefore, the web may be able to reach the plastic moment. However, the reason why a longitudinal stiffener may not be used to satisfy compactness requirement is not cleary explained in AASHTO LRFD (2007). In this study, the buckling and ultimate strength behaviors of stiffened webs subjected to bending are investigated through the linear buckling and nonlinear finite element analysis. It is found that steel plate girders having webs that do not satisfy the compactness requirement are able to reach the plastic moment if the longitudinal stiffeners have sufficient rigidities and are properly located. From a nonlinear regression analysis of the results, a new compactness requirement is suggested for webs stiffened with one longitudinal stiffener.

Elasto-Plastic F.E. Analysis of Plane Framed Structures including Large Deformation Effects (대변형(大變形) 효과(效果)를 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 탄(彈)-소성(塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Yoo, Soon Jae;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.105-117
    • /
    • 1994
  • A finite element procedure which can trace plastic collapse behavior of plane frame structures under small and large deformation is presented. The member is assumed to be prismatic and straight, and has the rectangular or I cross section. For the elasto-plastic analysis, the concept of plastic hinge is introduced and the incremental displacement method is applied. The limit state condition of the plastic hinge is considered under the combined condition of a bending moment and an axial force. Numerical examples are presented in order to demonstrate the validity and efficiency of the proposed procedure.

  • PDF

Analytical Study on Ductility Index of Reinforced Concrete Flexural Members (철근 콘크리트 휨부재의 연성지수에 관한 해석적 연구)

  • Lee, Jae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.391-402
    • /
    • 1994
  • One of the most important design concept for reinforced concrete structures is to achieve a ductile failure mode, and also moment redistribution for economic design is possible in case that adequate ductility is provided. Flexural ductility index is, therefore, used as a reference for possibility of moment redistribution as well as for prediction of flexural behavior of designed R.C. structures. Ductility index equations, however, provide approximate values due to the linear concrete compressive stress assumption at the tension steel yielding state. Theoretically more exact ductility index is calculated by a numerical analysis with the realistic stress-strain curves for concrete and steel to be compared with the result from tire ductility index equations. Variation of ductility index for the selected variables and the reasonable maximum tension steel ratio for doubly reinforced section are investigated. A moment-curvature curve model is also proposed for future research on moment redistribution.

  • PDF

An Elasto-Plastic Constitutive Law for Modeling the Shear Behavior of Rough Rock Joints (거친 절리면의 전단거동 해석을 위한 탄소성 구성법칙)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.234-248
    • /
    • 1998
  • This paper presents a new constitutive model for numerical modeling the shear behaviour of rough rock joints. The model incorporates the dilatancy of joints on the basis of elasto-plastic theory. Barton's empirical shear strength formular are adopted in the formulation process. The mobilized JRC concept is evoked to address the shear strength hardening and sofrening phenomena. The mobilized JRC in the pre- and post-peak range is approximated by assuming that the variation of JRC is a function of tangential plastic work. Discrete finite joint element is used to implement the proposed constitutive model. The model is validated by the numerical direct shear test on a single joint which is subjected to different boundary conditions. The test results are in good agreement with the experimental observations reported by other authors. The numerical tests also exhibit that the proposed model can simulate the salient features envisaged in the behaviour of rough rock joints.

  • PDF

A Study on the Design of Shear Connector of Continuous Composite Bridge (연속합성형 교량의 전단연결재 설계에 관한 연구)

  • Chang, Sung Pil;Kang, Sang Gyu;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.351-362
    • /
    • 1997
  • In designing short to medium-span bridges, continuous composite bridges are becoming popular due to their advantages. However, if the concrete slab in continuous composite bridge is not prestressed, negative moment occurs in the mid-support and creates problems such as cracks in the concrete slab. Therefore. it must be considered in design. Two methods of arrangement of shear connectors were conducted using finite element elastic plastic analysis. Partial interaction theory was introduced and an analytical solution based on this theory was derived. The differences in the degree of interaction were investigated using analytical solutions and finite element analyses of simple composite beam and continuous composite beams. The results of the analyses were used to determine the advantage and disadvantages as well as any precaution when necessary using partial composite during actual design and construction.

  • PDF