• Title/Summary/Keyword: 소성진

Search Result 231, Processing Time 0.026 seconds

A Study on the Fabrication of Nano Pattern using a Nickel Stamper Replicated from Anodic Aluminum Oxide (Anodic Aluminum Oxide 기반 니켈 스탬퍼를 이용한 나노패턴 성형에 관한 연구)

  • Kim, S.;Kim, J.S.;Hong, S.K.;Kim, H.J.;Yoon, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • For the fabrication of nano patterned products manufacturing a nano patterned mold is needed in advance. The nano patterned stamper was fabricated by electroforming the AAO master with nickel. The surface of nickel-plated stamper had nano-patterned holes with the diameter of 73 nm and the depth of 83 nm. Hot embossing was used for forming P3HT sheet and the process factors of hot embossing were closer as pressure, temperature and time. In the present paper hot embossing experiments were performed to find the main process conditions to affect the replication ratio of nano patterns on surface of P3HT sheet. As a result, main contributing factors for the replication ratio of hot embossed pattern could be sequentially enumerated as pressure, temperature and time.

Influence of the Thermal Characteristics of Die Material in Stamping (금형재료의 열특성이 스탬핑에 미치는 영향)

  • 이항수;김충환;전기찬;김중재;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.79-86
    • /
    • 1994
  • 스템핑용 냉연강판의 기계적 성질은 온도에 따라 변하므로 금형재의 열적 특성은 성형의 성공여부에 영향을 미칠 수 있으며 재질선정에 있어 중요한 인자의 하나이다. 금형재질이 성형에 미치는 영향을 조사하기 위하여 차체의 패널용으로 사용되는 강판에 대하여 상온 및 고온에서의 인장시험을 하였으며 구상흑연주철과 회주철을 중심으로 열특성을 조사하였다. 연신율과 인장 강도의 온도 의존성에 대한 검토와 함께 금형재료에 따른 열전달 특성을 분석하여 열특성 측면에서는 회주철이 구상흑연 주철보다 더 적합 하며 열전도율이나 비열 등의 열특성치도 금형재 선정에 중요한 인자중 하나라는 결론을 얻었다.

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of Die Steels (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • Jeong H. S.;Cho J. R.;Cha D. J.;Bae Y. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.131-135
    • /
    • 2001
  • Evaluation of microstructural changes during open die forging of heavy ingots is important for process control. The objective of the control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects md to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent processes of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

A Study on the Distortion induced by Heat Treatment on Automobile Bevel Gears (단조/절삭 베벨기어의 열처리 변형에 관한 연구)

  • 강우진;김명곤;조종래;이정환;이영선;배원병
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.221-227
    • /
    • 2003
  • Heat treatment is widely used in various manufacturing Processes to enhance the quality of a Product such as strength, surface hardness, and service life. In the heat treatment, there is dimensional change or distortion of the product, which critically influences the dimensional accuracy of precision parts. In this study, the distortion of a straight bevel gear induced by heat treatment is investigated in two cases. In the first case, the distortion induced by heat treatment we compared between a forged bevel gear and a machined bevel gear. In the second case, the distortion of an annealed gen is compared with that of a quenched gear. And finite element analysis has been Performed to predict the distortion of a heat-treated and machined bevel gear. The predicted values are compared with the experimental values.

A Study on the Development of Cathode-Ray Tube Die Using Hot forging (열간단조를 이용한 브라운관 금형의 개발에 관한 연구)

  • 차도진;조종래;배원병;황남철
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.533-538
    • /
    • 2000
  • This study has been carried out to develop a CRT die using hot forging. The conventional CRT die made by casting has defects such as void and inclusion. These defects of the cast die make micro-spots on the surface of the CRT which affect the quality of the final product. So, a hot forging process is developed to avoid these defects of CRT die by the model material test and the rigid-plastic FEM. Firstly, model material tests are carried out with plasticine billets in order to investigate the material flow pattern in the die cavity and to get the reasonable initial values for designing the preform in the FE simulation. And then a finite element analysis has been performed to Predict the preform and the forging load of a CRT die. We also suggest an integrated die-set which combines two die-sets into one die-set to save manufacturing time and cost in case of similar die-size.

  • PDF

DYNAMIC SET-UP CONTROL OF TANDEM COLD MILL (연속압연기에서 OFF GAUGE 저감을 위한 DYNAMIC SET-UP 제어기술)

  • 노호섭;최병조;조뇌하;이재훈;김익준;진철제;박기영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.126-131
    • /
    • 1999
  • In order to reduce the length of off-gauge at FGC(Flying gauge change) point, We adopted dynamic set up in No. 4 cold rolling mill. The conventional set-up of FGC(Flying gauge change) was calculated on the basis of preset values in the process control computer, so the difference between actual strip thickness and preset thickness cause long off-gauge. The dynamic SET-UP control was calculated on the basis of actual strip thickness of FGC(Flying gauge change) point from X-ray gauge of mill entry and No.i stand. We applied dynamic SET-UP control in September last year. Compare to the previous result, the length of off-gauge is reduced by about 36%.

  • PDF

An investigation on the development of Door Inner using Tailored Blank (Tailored Blank를 이용한 Door Inner 개발에 관한 연구)

  • 최이천;이종민;최치수;유동진;전기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.37-41
    • /
    • 1997
  • Tailored Blanks are defined as two or more separate pieces of sheet material having the same or dissimilar thickness and/or physical properties, joined together before forming. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength. In this paper, the deforming behaviour of the laser welded blanks with regard to different thicknesses and combinations are described through some experimental investigations on the formability of a door inner. To investigate how the combination of thickness and material property influences the movement of welding line, a series of laser welded T/B blanks are tested.

  • PDF

A Progressive Fine Blanking Process Design for Forming of Carrier Plate (캐리어 플레이트 성형을 위한 프로그레시브 파인 블랭킹 공정의 설계)

  • Kim J. D.;Kang J. J.;Hong S. K.;Kim B. J.;Kim H. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.207-214
    • /
    • 2005
  • Blanking process is widely used fur producing various structural parts. However, fine blanking technology is frequently used as a single step blanking operation with clean cut surface of a sheared surface because the fractured surface of parts causes serious problems in the final product and therefore it must be removed by the post-processing in case of the conventional blanking. In the present investigation, a fine blanking process was designed within the framework of progressive die to produce a carrier plate assembled within the auto transmission. Finite element analysis of the shearing behavior at the respective stage of the progressive fine blanking was conducted to validate the designed die parameters. Finally the designed progressive fine blanking process was experimentally evaluated by using the machined die.

Finite element simulation of sheet metal forming by using non-parametric tool description with locally refined patches (국소 분할된 패치를 갖는 비매개변수 금형묘사법을 이용한 3차원 박판성형공정해석)

  • 윤정환;양동열;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.162-169
    • /
    • 1995
  • An improved nonparametric tool description based on successive refined monparametric patches is proposed and therlated criterion for refinement is also discussed . In the proposed sheme, any required order of tool surface conformity can be achieved by employing successive refinements accoring to the suggested criterion. By using the suggested adaptive tool refinement technique based on the nonparametric patch tool description, the locally refined nonparametric tool surface with economic memory size and sufficient accuracy as well as with favorable charateristics for contact treatment can be obtained directly form the parametric patch related with commerical CAD system. Computation is carried out for a chosen complex sheet forming example of an actual autobody panel in order to verify the validity and the efficiency of the developed tool surface description.

  • PDF

Characterization of Superplasticity Using Cone-Type Bulge Test (원뿔형 금형을 이용한 초소성 변형 특성 평가)

  • Kwon Y.-N.;Lee S. J.;Lee Y. S.;Lee H. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.180-183
    • /
    • 2004
  • Superplastic formability depends on flow parameters such as temperature, strain rate, strain and stress, microstructures. Usually, superplastic properties of materials are characterized with using a uni-axial tension testing. However, superplastic sheet is formed under mutiaxial loading condition in most forming practices. In the present study, superplastic characteristics of A15083 alloys were determined with using both a uni-axial and biaxial bulging tests. Specially, cone-type die was used to achieve constant strain rate under constant pressure condition. Even though constant strain rate under a certain pressure was achieved only approximately, a cone-type bulging test was found to be quite beneficial to get a multiaxial formability of superplastic materials.

  • PDF