• Title/Summary/Keyword: 소성변형비

Search Result 403, Processing Time 0.024 seconds

Tests on Failure of Steel Angles due to Very Low-Cycle Fatigue of Loading (극저사이클 재하하에서 앵글 강부재의 파괴실험)

  • Park, Yeon Soo;Kim, Sung Chil;Lim, Jung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.23-32
    • /
    • 1992
  • The objective of this study is to identify the quantitative relationships among the important physical factors associated with failure of steel members under strong seismic excitations through very low-cycle fatigue tests. Very low-cycle fatigue is meant to be structural fatigue causing cracks and rupture in about 5~30 cycle ranges. The angle specimen was subjected to repeated axial Ioad after undergoing inelastic buckling. The test results reveal that the energy absorption capacities vary heavily with the history of loading and the failure mode. The maximum values of residual local strain at the initiation of a visible crack due to the very low-cycle fatigue were of the order of 25~40%, regardless of loading patterns, deflection modes, and width-to-thickness ratios.

  • PDF

Study on Behavior Characteristics of a Pile-Type Vessel Collision Protective Structure (파일형 선박 충돌방호공의 거동특성 연구)

  • Lee, Gye-Hee;Lee, Jeong-Woo
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.75-85
    • /
    • 2011
  • In this study, the behavior were analyzed for the bow collision event. The model of protective Structure was consist of slab, RCP and non-linear soil spring. The ship was modeled by bow and midship. The bow model was composed by elastic-plastic shell elements, and the midship was composed by elastic solid element. According to the weight of the ship's change from DWT 10000 until DWT 25000 increments 5000. The head-on collision was assumed, its speed was 5knot. Analysis was carried out ABAQUS/Explicit. As the result, increasing the weight of the ship deformability in athletes and to increase the amount of energy dissipated by the plastic could be confirmed.

Bending Performance Evaluation of Concrete Filled Tubular Structures With Various Diameter-thickness Ratios and Concrete Strengths (콘크리트 충전강관 구조의 직경-두께비 및 콘크리트 강도 변화에 따른 휨 성능 평가)

  • Lee, Sang-Youl;Park, Dae-Yong;Lee, Sang-Bum;Lee, Rae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.223-230
    • /
    • 2009
  • In this study we deal with bending behaviors of a concrete filled tubular(CFT) with various diameter-thickness ratios and concrete strengths. In finite element analysis using a commercial package(LUSAS), the bonding effect between concrete and steel in CFT structures is modeled by applying a joint element for the bonding surface. In order to consider the nonlinearity of concrete and steel tubes, stress-strain curves of the concrete and steel are used for the increased stresses in a plastic domain. The numerical results obtained from the proposed method show good agreement with the experimental data from load-displacement curves of a steel tube under distributed loads. Several parametric studies are focused on structural characteristics of CFT under bending effects for different diameter-thickness ratios and concrete strengths.

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Non-Local Plasticity Constitutive Relation for Particulate Composite Material Using Combined Back-Stress Model and Shear Band Formation (비국부 이론을 이용한 입자 강화 복합재 이중후방응력 소성 구성방정식 모델 및 전단밴드 분석)

  • Yun, Su-Jin;Kim, Shin Hoe;Park, Jae-Beom;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1057-1068
    • /
    • 2014
  • This paper proposes elastic-plastic constitutive relations for a composite material with two phases-inclusion and matrix phases-using a homogenization scheme. A thermodynamic framework is employed to develop non-local plasticity constitutive relations, which are specifically represented in terms of the second-order gradient terms of the internal state variables. A combined two back-stress evolution equation is also established and the degradation of the state and internal variables is expressed by continuum damage mechanics in terms of the damage factor. Then, deformation localization is analyzed; the analysis results show that the proposed model yields a wide range of shear band formation behaviors depending on the evolution of the specific internal state variables. The analysis results also show good agreement with the results of simplified Rice instability analyses.

Seismic Performance of Special Shear Wall with Modified Details in Boundary Element Depending on Axial Load Ratio (축력비에 따른 수정된 단부 횡보강상세를 갖는 특수전단벽의 내진성능)

  • Chun, Young-Soo;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.7 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • In this paper, we propose experimental results, which target the major variables that influence the structural performance of a wall, as well as the resulting seismic and hysteretic behavior. Results also provide the basis for the application of performance based design by identifying the nonlinear hysteretic behavior of the wall with boundary element details recently proposed in previous study by Chun et al(2011). From the experimental results, the crack and fracture patterns of a specimen, which adopt the proposed boundary element details, showed similar tendencies regardless of whether axial force or high performance steel bars is applied. Furthermore, results show that the maximum strength of the specimen can be predicted accurately based on the design equation proposed by the standard. In addition, with a higher axial force, there is a tendency that both the initial load and maximum strength increase as deformation capacity reduces, requiring consideration of the reduced deformation capacity due to a high axial force. For walls under such high axial forces, using high performance steel bars is a very effective manner of enhancing deformation capacity. Therefore, reinforcing the plastic hinge region with boundary elements using high performance steel bars is preferable.

The Effects of Principal Stress Rotation in K0-Consolidated Clay (K0-압밀점토(壓密粘土)의 주응력회전(主應力回轉) 효과(効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 1988
  • The directions of the principal strain increment, stress, and stress increment during rotation of the principal stress axes at any stress level was studied for $K_0$-consolidated clay using torsion shear apparatus with individual control of the vertical stress, the confining pressure, and the shear stress on hollow cylinder specimens under undrained and drained condition. The torsion shear tests were performed according to predetermined stress-paths, which were chosen to cover over the full range of rotation of principal stress axes. The test results indicated that the strain increment vectors at failure coincided with the stress vectors. That is, the direction of strain increment coincided with the direction of stress increment at small stress levels and with the direction of stress at higher stress levels, which indicated that the behavior of clay was transfered from elastic to plastic as the stress level was increased. The applicability of the elastoplastic theory for modeling of the behavior of clay during rotation of the principal stress axes was given.

  • PDF

The Influence of Extrusion Ratio on Microstructure and Thermoelectric Properties of Rapidly Solidified N-type $Bi_2Te_{2.75}Se_{0.15}$ (급속응고된 N-type $Bi_2Te_{2.75}Se_{0.15}$ 열전재료의 미세조직과 열전특성에 미치는 압출비의 영향)

  • 이상일;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.30-30
    • /
    • 2001
  • $Bi_2Te_3$계 열전재료는 200~400K 정도의 저온에서 네어지 변환효율이 가장 높은 재료로써 열전냉각, 바런재로 등에 응요하기 위하여ㅠ 제조법 및 특서에 관한 많은 연구가 진행되어 왔다. $Bi_2Te_3$계 화합물은 rhombohedral의 결정 구조를 가지는 층상 화 ;물로 결정대칭성으로 인해 연전기적으로 큰 이방성을 나타낸다. 현재는 일반향용고법에 의해서 입자를 a축 방향으로 성장시켜 큰 결정립을 가진 다결정재료를 사용하고 있으나, c면이 매우 취약하기 때문에 가공서이 나쁘다. 따라서 이와같은 단점을 개선하기 위하여 기계적 강도를 높일 수 있는 가공공정 및 합금설계에 대한 연구가 활발히 진행되고 있다. 측히 열간 압출법으로 제조된 열전재료는 결정립의 미세화와 높은 이방성으로 성능지수와 기계적 강도를 향상시킬 수 있다는 연구결과가 보고되고 있다 또한 Schultz드의 연구결과에 의하면 $Bi_2Te_3$ 계 열전재료는 소성변형에 의하여 발생한 점결함에 의하여 캐리어 농도가 변화되며 이로 인하여 재료의 전기적 성질이 결정된다고 하였다. 따라서 상당히 큰 소성가공량과 열전측성과의 관계를 규명하는 것은 매우 중요하다. 이에 본 연구에서는 압출변수 중 소성가공량에 중요한 변수로 작요아는 압출비를 변화시켜 최적의 열간 소성가공량을 검토하고, 이에 따른 열전측성과 압출비와의 상관관계에 대하여 연구하는 것을 목적으로 하였다. 연구에 사용된 N형의 조성은$Bi_2Te_{2.75}Se_{0.15}$로서 순도 99.99를 사용하였고, dopant로 0.1wt%의 $SbI_3$를 사용하였다. $Bi_2Te_{2.75}Se_{0.15}$ 분말은 가스분사법(Gas atomization Process)를 이용하여, 용탕제조시 아르곤가스로 산화를 방지하였고, 냉매로는 질소가스를 이용하였다. 제조된 분말을 기ㅖ적 분급법을 이용하여 분급하였고, 냉매로는 질소가스를 이용하였다. 제조된 분말을 기계적 분급ㅂ법을 이용하여 분급하였고, 압출에 이용된 분말은 250$\mu\textrm{m}$이하의 크기를 사용하였다. 또한 분말제조과정 중 형성되는 표면산화층을 제거하기 위하여 36$0^{\circ}C$에서 4시간동안 수소 환원처리를 행하였다. 제조된 분말은 열간 압출을 위하여 Aㅣcan에 넣고 냉간성형체를 만들고, 진공처리를 한 후 밀봉하여 탈가스처리를 하였다. 압출다이는 압출비가 각각 28:1과 16:1인 평다이(9$0^{\circ}C$)를 사용하여 각각 내경이 9, 12cm이고, 길이가 50, 30cm인 압출재를 제조하였다. 열간압출한 후의 미세조직을 광학현미경으로 압출방향에 평행한 방향과 수직방향으로 관찰하였고, 열간 압출재 이방성을 검토하기 위하여 X선 회절분석을 실실하여 결정방위를 확인하였다. 전기 비저항 및 Seebeck 계수 측정을 위하여 각각 2$\times$2$\times$10$mm^3$ 그리고 5$\times$5$\times$10$mm^3$ 크기의 시편을 준비하였다.준비하였다.

  • PDF

A Study on the Fatigue Fracture Behavior in Butt Welded Joints of Steel Structures (강구조물(鋼構造物) 맞대기 용접연결부(鎔接連結部)의 피로파괴거동(疲勞破壞擧動)에 관한 연구(硏究))

  • Park, Je Seon;Chung, Yeong Wha;Kim, Jeong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 1986
  • For the research on the fatigue fracture behavior in the welded joints of steel structures, base metal specimens and welded ones were selected, and the direct fatigue tests were carried out. Thereafter, fatigue-life (S-N) curves, plastic strain-number of cycles (${\varepsilon}_p$-N) curve, the extrapolated fatigue-life (${\varepsilon}_p$-$N_c$) curve, and da/dN-${\Delta}K$ curves were plotted. By these results the followings were obtained. It was shown that the ratio of fatigue strength at $2{\times}10^6$ cycles of the welded specimen to that of the base metal one was 0.6, and that 0.72 for the base metal and 0.65 for the welded one were the ratio of fatigue strength at $2{\times}10^6$ cycles to yielding stress. The S-N curve for the welded specimen was separated into two sections, the low gradient section and the steep section. As this result, it was shown that the more stress became to reduce, the more the reduction of fatigue strength became to be great. It was shown that fatigue strength at $2{\times}10^6$ cycles from this case was about 83 % of that from the S-N curve plotted with one section. It was thought that the reason was that weld flaw acted greatly on the fatigue strength within the low stress range. It was shown that at the instart of crack initiation plastic strain increased abrupt1y in the case of the welded specimen more than the case of the base metal specimen, and increased abruptly in the upper stress range in both cases. It was shown that the experimental constant ${\alpha}$, 0.42, in the base metal nearly accorded with Manson-Coffin's result, but this made a great difference with the case in the welded specimen. It was thought that it was due to the abrupt change of plastic strain and the influence of weld flaw.

  • PDF

A Constitutive Model Using the Spacing Ratio of Critical State (한계상태 간격비를 이용한 구성모델)

  • Lee, Seung-Rae;O, Se-Bung;Gwan, Gi-Cheol
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.45-58
    • /
    • 1992
  • An elasto-plastic constitutive model for geological materials, which satisfies the flezibility and stability at the same time, can be used in a number of geotechnical problems. Using the spacing ratio of critical state, a flexible model is proposed based on the stability of modified Camflay model. The spacing ratio of critical state can be simply evaluated, and practically used in describing the undrained shearing behavior of clay. The proposed model has precisely predicted the stress paths and stress -strain relationships, compared with the modified Camflay model, with respect to undrained triaxial test results. Besides, the effects of strain rate, creep, and relaxation can also be considered. Using the quasi-state boundary surface, the constitutive relations are well predicted. Therefore, it is found that the assumption of associative flow rule is well posed for undrained behavior of normally consolidated clay.

  • PDF