• Title/Summary/Keyword: 소산률

Search Result 82, Processing Time 0.024 seconds

Quality Characteristics of Chinese Cabbage with Different Salting Conditions Using Electrolyzed Water (전기분해수를 이용한 절임 조건에 따른 배추의 품질 특성)

  • Jeong, Jin-Woong;Park, Seong-Soon;Lim, Jeong-Ho;Park, Kee-Jai;Kim, Bum-Keun;Sung, Jung-Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1743-1749
    • /
    • 2011
  • The microbial reduction and quality characteristics of salted Chinese cabbage using electrolyzed water were investigated. The electrolyzed water was used to control the microbes in the processes of primary washing, salting, and secondary washing. The total bacteria, lactic acid bacteria, coliform, pH, salinity, vitamin C, and total sugar were analyzed. After primary washing by electrolyzed water, the total bacteria populations were reduced to 2.78 log cfu/g, and the coliform populations were similarly reduced. After secondary washing by electrolyzed water, the total bacteria population of Chinese cabbage was reduced to a maximum of 1.5 log cfu/g. The salinity of Chinese cabbage and salting solutions increased rapidly over three hours, and then increased slowly. The sterilization effect of electrolyzed salting water could not last beyond 3 hours, because the OHCl concentration of electrolyzed water was reduced by over 90% at the third hours of the salting process. Vitamin C was reduced and total sugar did not change regardless of treatments during the salting process. Consequently, electrolyzed water was effective to remove microbes from salted Chinese cabbages.

Pseudo Dynamic Test Study on Seismic Performance Evaluation of RC Columns Retrofitted by PolyUrea (내진보강용 폴리우레아로 보강된 철근콘크리트 기둥의 내진성능 평가에 대한 유사동적실험 연구)

  • Cho, Chul Min;Lee, Doo Sung;Kim, Tae Kyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.289-301
    • /
    • 2017
  • As earthquakes have frequently happened all over the world, huge losses of human life and property have occurred. Therefore, retrofitting and strengthen technologies of non-seismically designed structures in Korea are urgent. Also, there has been a growing interest about seismic retrofitting, where researches on the topic have been actively pursued in Korea. The study results showed that ductility inducing retrofitting method is more superior stiffness inducing method. In Japan, Super Reinforcement with Flexibility (SRF) was introduced. Therefore, in this study, seismic performance evaluation was performed through pseudo dynamic test and uniaxial compression test for RC column retrofitted by PolyUrea for ductility inducing retrofitting material. Uniaxial compression test results showed that strength of all specimens retrofitted by PolyUrea was higher than that of RC specimens. Also, all specimens retrofitted by PolyUrea also showed ductile fracture behavior. In pseudo dynamic test, by appling real earthquake record, the seismic behavior of RC column reinforced by PolyUrea was evaluated through relative displacement, reinforcement strain, displacement ductility, and dissipation energy. The results showed that PolyUrea helped to enhance seismic performance of RC columns.

Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-Phase Cross-Flow (2 상 유동장에 놓인 열 교환기 튜브에 작용하는 점성과 압착막 감쇠비의 어림적 해석 모델)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2015
  • An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio.

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.

Effects of Elevated CO2 and Temperate on the Growth of Endangered Species, Cicuta virosa L. in Korea (CO2농도와 온도 상승이 한국멸종위기식물 독미나리의 생장에 주는 영향)

  • Park, Jae Hoon;Hong, Yong Sik;Kim, Hae Ran;Jeong, Jung Kyu;Jeong, Heon Mo;You, Young Han
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • The effect of elevated $CO_2$ and temperature on ecological characteristics of Cicuta virosa L., the endangered plant were examined under ambient $CO_2$+ambient temperature(AC-AT), ambient $CO_2$+elevated temperature(AC-ET) and elevated $CO_2$+elevated temperature for two years. Shoot length and the number of umbels were not different in three environmental gradients. The number of tillers was high in the order of EC-ET, AC-ET and AC-AT. The number of compound umbel was the lowest in the EC-ET. Fruit set rate was the highest in the AC-AT. These results mean that unsexual propagation of C. virosa may increase by promoting growth of tillers, rather than seed production under future global warming. This population growth study will be used as the important data for the research of Korean endangered species.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Evaluation of Serviceability and Flexural Performance for RC Hollow Slab by Hollow Ratio and Damping Ratio (중공율과 감쇠율을 이용한 RC 중공 슬래브의 사용성 및 휨성능 평가)

  • Jong Hoon Kim;Dong Baek Kim;Yong Gon Kim;Jae Won Lee;Jeong Ho Choi
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.930-935
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the stiffness reduction and damping ratio of reinforced concrete hollow slabs and to analyze their performance, and to study the effect of the damping effect of hollow bodies and the stiffness reduction on the serviceability of slabs. Method: Test specimen was made in a size of 0.6m*0.21m*3.6m to evaluate the vibration effect of the slab, and the hollow ratio was set in six steps from 0.0% to 30% to measure the change in rigidity and damping according to the change in the hollow ratio. Result: As the hollow ratio increases, rigidity decreases and the natural frequency decreases, but as the mass decreases, the natural frequency increases gradually. Since energy is hardly dissipated up to the hollow ratio of 20%, the hollow ratio should be reduced by 30%. Conclusion: It was found that the bending strength degradation of the slab with a hollow ratio of about 30% is minimized, but an appropriate natural frequency can be maintained, and a certain damping effect can be obtained.

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Investigation on the Frequency and Severity of Common Adverse Reactions of Japanese Encephalitis Vaccines (일본뇌염 백신의 이상반응 실태조사)

  • Kim, Boo Young;Kim, Dong Hyun;Lee, Hun Jae;Jung, Soo Kyung;Li, Xiao Shan;Park, Sook Kyung;Go, Un Yeong;Hong, Young Jin
    • Pediatric Infection and Vaccine
    • /
    • v.16 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • Purpose : To evaluate the number and severity of adverse reactions after Japanese Encephalitis (JE) vaccination in children using different vaccines (inactivated vaccine or live attenuated vaccine) and to determine the ability and safety of the vaccines to provide effective immunization for JE. Methods : From August 2006 to February 2007, we conducted a prospective cohort study of the adverse reactions associated with JE immunization in Korea. We investigated common adverse reactions during the 4 days following immunization using telephone collaborations with four public health centers and nine pediatric clinics. Results : The mean age of children receiving the inactivated vaccines and live attenuated vaccines, respectively, were 1.4 y (range: 1 to 8.5) and 1.7 y (range: 1 to 8.3). The number of children that received the inactivated vaccines was 425 (64.6%). A total of 233 (35.4%) received the live attenuated vaccines. Fourteen children (3.3%) had more than one localized adverse event with the inactivated vaccine, and six (2.6%) had more than one event with the live attenuated vaccine (P =0.607). Systemic adverse reactions occurred in 5.2% vs. 8.2%, respectively, of these groups (P =0.131). Fever was more common in the live attenuated vaccine group than in the inactivated vaccine group on the day of vaccination (P =0.026). Conclusions : The rate of adverse events in our study was even lower than that previously reported. No significant difference in outcomes between inactivated vaccine and live attenuated vaccine was found in JE-immunized children. Fever was more common in the live attenuated vaccine group than in the inactivated vaccine group on the day of vaccination.

  • PDF