• Title/Summary/Keyword: 소산계수

Search Result 123, Processing Time 0.208 seconds

A Study on Development of Damage Impact Distance Calculation Formula for Accident Response and Prevention in case of Leakage of Substances Prepared for Evacuation of Residents in Chungju (충주의 주민대피 대비물질 누출사고 시 사고대응·예방을 위한 피해영향거리 산정식 개발 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub;Lee, Myeong-Ji;Yun, Jeong-Hyeon;Jung, Woong-Yul;Oh, Seung-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.703-712
    • /
    • 2021
  • In this study, a formula was derived to calculate the damage impact distance using the Chemical Accident Response Information System (CARIS) so that local governments can decide on the evacuation and notification of 13 types of substances. The National Institute of Chemical Safety selected 16 out of 97 types of accident preparedness substances in 2018 and called them residents' evacuation preparedness substances. In a chemical accident, local governments should prepare for resident notification, such as emergency disaster texts. Using the CARIS in Chungju, this study modeled the damage-affected distances of 13 types of substances for the evacuation of residents. Under all conditions, the coefficient of determination R2 was 0.99 or higher, representing a range of at least 0.9921 to a maximum 0.9999. The relative standard deviation between the damage impact distance obtained using the calculation formula, and the CARIS result was compared. The minimum separation distance was corrected considering the actual chemical accident response situation, and the range was found to be between 0.58 and 5.97%. The damage impact distance can be calculated at the site using the calculation formula derived from the research, and local governments can determine whether to evacuate or notify residents.

Spatial Variation Analysis of Soil Characteristics and Crop Growth across the Land-partitioned Boundary II. Spatial Variation of Soil Chemical Properties (구획경계선(區劃境界線)의 횡단면(橫斷面)에 따른 토양특성(土壤特性)과 작물생육(作物生育)에 관한 공간변이성(空間變異性) 분석연구 II. 토양(土壤) 화학성(化學性)의 공간변이성(空間變異性))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 1989
  • In order to study spatial variability of soil chemical properties across the land-partitioned boundary on Hwadong silt clay loam soil (Fine clayey, mixed, mesic family of Aquic Hapludalfs) in the experimental fie ld of the wheat and Barley Research Institute in Suwon, all measured data were analyzed by means of kriging, fractile diagram, smooth frequency distribution, and autocorrelation. Sampling for soil chemical property analysis was made at 225 intersections of 15x 15 grid with 10m interval from three soil depths (0-10cm, 25-35cm, 50-60cm) in the seven patitioned fields. 1. The coefficient of variance (CV) of various chemical properties varied from 5.4 to 72.7%. Soil pH was classified into the low variation group with CV smaller than 10%, while the other chemical properties belonged to the medium variation group with C.V. between 10 and 100% 2. The approximate number of soil samples for the determination of various chemical properties with error smaller than 10% were two for pH, ten for CEC, 15 for exchangeable Ca, 32 for total nitrogen content, 39 for exchangeable Mg, 40 for exchangeable K, 61 for exchangeable Na, 82 for organic matter content, 212 for available phosphate,. 3. Smooth frequency distribution and fractile diagram showed that available phosphate was in log-normal distribution while others were in normal distribution. 4. Serial correlation analysis revaled that the soil chemical properties had spatial dependence between two nearest neighbouring grid points. Autocorrelation analysis of chemcial properties measured between the serial grid points in the direction of south to north following land-partitioned boundary showed that the zone of influence showing stationarity ranged from 20 to 50m. In the direction of east to west accross land-partitioned boundary, the autocorrelogram of many chemical properies showed peaks with the periodic interval of 30m, which were similar to the partitioned land width. This reveals that the land-partitioned boundary causes soil variability.

  • PDF

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.