• 제목/요약/키워드: 소비전력 최소화

Search Result 235, Processing Time 0.03 seconds

Development of Optimized State Assignment Technique for Testing and Low Power (테스팅 및 저전력을 고려한 최적화된 상태할당 기술 개발)

  • Cho Sangwook;Yi Hyunbean;Park Sungju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • The state assignment for a finite state machine greatly affects the delay, area, power dissipation, and testabilities of the sequential circuits. In order to improve the testabilities and power consumption, a new state assignment technique . based on m-block partition is introduced in this paper. By the m-block partition algorithm, the dependencies among groups of state variables are minimized and switching activity is further reduced by assigning the codes of the states in the same group considering the state transition probability among the states. In the sequel the length and number of feedback cycles are reduced with minimal switching activity on state variables. It is inherently contradictory problem to optimize the testability and power consumption simultaneously, however our new state assignment technique is able to achieve high fault coverage with less number of scan nfp flops by reducing the number of feedback cycles while the power consumption is kept low upon the low switching activities among state variables. Experiment shows drastic improvement in testabilities and power dissipation for benchmark circuits.

Reducing Power Consumption of a Scheduling Algorithm for Optimal Selection of Supply Voltage under the Time Constraint (시간 제약 조건하에서의 최적 선택 공급 전압을 위한 전력 감소 스케줄링)

  • 최지영;김희석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1132-1138
    • /
    • 2002
  • This paper proposes a reducing power consumption of a scheduling algorithm for optimal selection of supply voltage. In scheduling of reduction power consumption, we determine the control steps of operations to be executed by exploiting the possibility of using variable voltage levels to reduce power consumption. In the optimal selection of supply voltage binding, we minimize the main factor of the power consumption of the switching activity on the registers using a graph coloring technique. From a set of experiments using high-level benchmark examples, we show that the proposed algorithm prefer to use optimal selection supply voltages rather than uniformed single voltage is effective in reducing power consumption.

Power Model of Sensor Node for Relative Comparison of Power Consumption in Mobile Sensor Network (모바일 센서 네트워크 라우팅 알고리즘 간의 전력 소비량 비교를 위한 센서 노드 전력 모델)

  • Kim, Min-Je;Kim, Chang-Joon;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.886-889
    • /
    • 2010
  • Power consumption measurement in sensor network is difficult to proceed by survey in real field. Thus, through simulation, the power consumption is estimated and replacement time of nodes are decided. A simulation tool simulates various facts such as power consumption, packet transmission traffic, network topology and etc. In this paper, it suggests sensor node power model to simulate power consumption which has large importance among simulation facts in sensor network. This model omits calculating expressions that the data originally surveyed can substitute with, according to power consumption property of each functions in sensor node in order to minimize calculations in simulation. In this case accuracy of power consumption estimation will be reduced, but can simulate it faster due to reduced calculation. Suggested model is fitted to analyze power consumption difference between two or more sensor network algorithms with rapid simulation speed rather than accurate simulation.

  • PDF

Security Scheme for Prevent malicious Nodes in WiMAX Environment (노드간 에너지 소비를 효율적으로 분산시킨 PRML 메커니즘)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Nam-Kyu;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.774-784
    • /
    • 2009
  • A wireless sensor network consisting of a large number of nodes with limited battery power should minimize energy consumption at each node to prolong the network lifetime. To improve the sensitivity of wireless sensor networks, an efficient scheduling algorithm and energy management technology for minimizing the energy consumption at each node is desired. ill this paper, we propose energy-aware routing mechanism for maximum lifetime and to optimize the solution quality for sensor network maintenance and to relay node from its adjacent cluster heads according to the node"s residual energy and its distance to the base station. Proposed protocol may minimize the energy consumption at each node, thus prolong the lifetime of the system regardless of where the sink is located outside or inside the cluster. Simulation results of proposed scheme show that our mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime. To verify propriety using NS-2, proposed scheme constructs sensor networks adapt to current model and evaluate consumption of total energy, energy consumption of cluster head, average energy dissipation over varying network areas with HEED and LEACH-C.

A Low power Scheduling and Allocation Algorithm for Multiple Supply Voltage (다중 공급 전압을 이용한 저 전력 스케쥴링 및 할당 알고리듬)

  • 최지영;박남서;안도희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • This paper presents a low power scheduling and allocation algorithm for multiple supply voltage. The proposed supply voltage scheduling algorithm determines the control step to execute a possible the operation experimentally using another supply voltage level. Also, the switching activity using component library. and the supply voltage allocation method uses the graph coloring technique for low power, the proposed algorithm Proves the effect through various high level benchmark examples to adopt a multiple supply voltage scheduling algorithm for low power.

  • PDF

Self-timed Current-mode Logic Family having Low-leakage Current for Low-power SoCs (저 전력 SoC를 위한 저 누설전류 특성을 갖는 Self-Timed Current-Mode Logic Family)

  • Song, Jin-Seok;Kong, Jeong-Taek;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.37-43
    • /
    • 2008
  • This paper introduces a high-speed low-power self-timed current-mode logic (STCML) that reduces both dynamic and leakage power dissipation. STCML significantly reduces the leakage portion of the power consumption using a pulse-mode control for shorting the virtual ground node. The proposed logic style also minimizes the dynamic portion of the power consumption due to short-circuit current by employing an enhanced self-timing buffer. Comparison results using a 80-nm CMOS technology show that STCML achieves 26 times reduction on leakage power consumption and 27% reduction on dynamic power consumption as compared to the conventional current-mode logic. They also indicate that up to 59% reduction on leakage power consumption compared to differential cascode voltage switch logic (DCVS).

A New State Assignment Technique for Testing and Low Power (테스팅 및 저진력을 고려한 상태할당 기술 개발)

  • Cho, Sang-Wook;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.9-16
    • /
    • 2004
  • The state assignment for a finite state machine greatly affects the delay, area, power dissipation, and testabilities of the sequential circuits. In order to improve the testabilities and power consumption, a new state assignment technique based on m-block partition is introduced in this paper. The algorithm minimizes the dependencies between groups of state variables are minimized and reduces switching activity by grouping the states depending on the state transition probability. In the sequel the length and number of feedback cycles are reduced with minimal switching activity on the state variables. Experiment shows significant improvement in testabilities and Power dissipation for benchmark circuits.

Cleaning Area Division Algorithm for Power Minimized Multi-Cleanup Robots Based on Nash Bargaining Solution (Nash 협상 해법 기반 전력 최소화를 위한 다중 청소로봇간 영역분배 알고리즘)

  • Choi, Jisoo;Park, Hyunggon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.4
    • /
    • pp.400-406
    • /
    • 2014
  • In this paper, we propose an approach to minimizing total power consumption by deploying multiple clean-up robots simultaneously in a given area. For this, we propose to use the cooperative game theoretic approaches (i.e., Nash bargaining solution (NBS)) such that the robots can optimally and fairly negotiate the area division based on available resources and characteristics of the area, thereby leading to the minimum total power consumption. We define a utility function that includes power consumptions for characteristics of areas and the robots can agree on a utility pair based on the NBS. Simulation results show that the proposed approach can reduce the total average power consumption by 15-30% compared to a random area division approach.

A Wireless AP Power Saving Algorithm by Applying Sleep Mode and Transmission Power Coordination in IoT Environments (사물 인터넷 환경에서 무선 AP의 수면 모드 운영 및 송출 전력 조절을 통한 전력 소비 절감 알고리즘)

  • Jeong, Kyeong Chae;Choi, Won Seok;Choi, Seong Gon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.393-402
    • /
    • 2014
  • We have experienced an explosive increase of the IoT(Internet of Things) technology based devices including smart phones and the wireless communications. Also the growing power consumption in IEEE 802.11 WLANs(Wireless LANs) driven by these dramatic increases in not only mobile users and but also wireless APs(Access Points). To reduce the power consumption, this paper proposes a wireless AP power saving algorithm, which minimizes the transmission power without decrease the transmission and carrier sense ranges. A wireless AP which is use in our algorithm checks its own original coverage periodically for whether there is a new STA(Station) or not when its transmission power is decreased. Moreover, if there are no signaling message to connect the wireless AP, it changes its operation mode Wake-up to sleep. A Result shows that the proposed AP algorithm can reduce the total power consumption of the wireless AP approximated 18% and 35% compared to the conventional wireless AP with and without the existing power saving algorithm, respectively.

Study of Efficient Energy Management for Ubiquitous Sensor Networks with Optimization of the RF power (전송전력 최적화를 통한 센서네트워크의 효율적인 에너지관리에 대한 연구)

  • Eom, Heung-Sik;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • This paper reconsiders established power conservation models for ubiquitous sensor networks that use relay nodes instead of direct communication and proposes novel network power consumption model with consideration of the channel level and radio chip level simultaneously. We estimate the effect of minimum hop-count policy in terms of network power consumption through simulation of various situations for low power RF module CC2420. It is observed that maximum RF power and minimum hop-count results in lower energy consumption relatively. Also, in total network energy consumption, which is included re-transmission, minimum hop count policy presents decrease by 33.1% of energy consumption in compare with the conventional model.