• 제목/요약/키워드: 소리 분류

검색결과 172건 처리시간 0.032초

감정별 고양이 소리 분류 및 생성 딥러닝 시스템 (A Deep Learning System for Emotional Cat Sound Classification and Generation)

  • 심주용;임성기;김종국
    • 정보처리학회 논문지
    • /
    • 제13권10호
    • /
    • pp.492-496
    • /
    • 2024
  • 반려동물, 특히 고양이는 인간과의 상호작용에서 다양한 소리를 통해 감정을 표현하는 것으로 알려져 있다. 고양이의 소리는 그들이 느끼는 감정 상태를 반영하며, 이를 이해하고 해석하는 것은 반려동물과의 소통을 더욱 원활하게 하는 데 중요한 요소이다. 최근 인공지능 기술의 발전으로 감정 인식과 관련된 연구가 활발히 진행되고 있으며, 특히 딥러닝 모델을 활용한 음성 데이터 분석이 주목받고 있다. 본 연구는 이러한 배경에서 출발하여, 고양이의 소리를 감정별로 분류하고 생성하는 딥러닝 시스템을 개발하는 것을 목표로 한다. 분류 모델은 고양이 소리를 감정별로 정확하게 분류하기 위해 학습되며, 소리 생성 모델은 SampleRNN과 같은 딥러닝 기법을 활용하여 특정 감정을 표현하는 고양이 소리를 생성할 수 있도록 설계된다. 마지막으로, 학습된 두 모델을 통합하여 고양이 소리를 녹음하고 이를 감정별로 분류한 결과 및 사용자의 요구에 따른 고양이 소리를 생성하여 제공할 수 있는 시스템을 제안한다.

소리 데이터 분류에 대한 데이터 증대 방법 연구 (A study on data augmentation methods for sound data classification)

  • 장일식;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1308-1310
    • /
    • 2022
  • 소리 데이터 분류는 단순 소리를 통한 분류, 감정 인식등 다양한 연구가 진행중이다. 심층 신경망에서 데이터의 부족과 과적합 문제를 개선하는 방법으로 데이터 증강은 중요하다. 본 논문에서는 3가지의 소리데이터(UrbanSound8K, RAVDESS, IRMAS)를 사용하였으며, 소리데이터는 멜 스펙트로그램을 통한 변환과정을 거쳐 네트워크 망에 입력된다. 입력된 신호는 다양한 네크워크 신경망(Bidirection LSTM, Bidirection LSTM Attention, Multi-Head Attention, CNN)을 통해 학습되어지며, 각각의 네트워크 신경망에서 데이터 증강 전후의 분류 정확도를 확인 하였다. 다양한 데이터셋과 다양한 네트워크 망에서의 데이터 증강 방법의 결과 비교를 통한 통찰을 얻을수 있을 것이다.

  • PDF

비음수 제약을 통한 일반 소리 분류 (Classification of General Sound with Non-negativity Constraints)

  • 조용춘;최승진;방승양
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권10호
    • /
    • pp.1412-1417
    • /
    • 2004
  • 전체관적인 표현방법인 희소 코딩 또는 독릴 성분 분해(ICA)는 이전의 청각의 처리와 소리 분류의 작업을 해명하는데 성공적으로 적용되었다. 반대로 부분 기반 표현법은 뇌에서 물체를 인식하는 방법을 이해하는 또 다른 방법이다. 이 논문에서, 우리는 소리 분류의 작업에 부분기반 표현법을 학습시키는 비음수화 행렬 분해(NMF)(1) 방법을 적용하였다. 잡음이 존재할 때와 존재하지 않을 때 두 가지 상황에서, NMF를 이용하여 주파수-시간영역의 소리로부터 특징을 추출하는 방법을 설명한다. 실험결과에서는 NMF에 기반을 둔 특징이 ICA에 기반을 두어 추출한 특징보다 소리 분류의 성능을 향상시킴을 보여준다.

PTZ 카메라 감시를 위한 실시간 위험 소리 검출 및 음원 방향 추정 소리 감시 시스템 (A Real-time Audio Surveillance System Detecting and Localizing Dangerous Sounds for PTZ Camera Surveillance)

  • 응웬비엣쿡;강호석;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제16권11호
    • /
    • pp.1272-1280
    • /
    • 2013
  • 본 논문에서는 실시간으로 위험한 소리를 인식하고 그 방향을 파악하여 이를 통해 PTZ Camera가 위험한 소리 방향으로 회전하여 해당 지역 영상을 획득하여 전송할 수 있도록 지원하는 소리 감시 시스템을 제안한다. 제안 소리 감시 시스템은 적응 혼합 가우시안 모델(AGMM)을 사용하여 일상적인 배경 소리와는 비정상적인 소리를 전경 소리로 검출하고, AGMM 모델로 미리 학습된 전경 소리들 중의 하나로 분류한다. 분류된 소리가 위험한 소리에 속하는 경우, Dual delay-line 방법에 기반을 둔 음원 방향 추정 기법을 사용하여 그 방향을 파악한다. 최종적으로 방향 정보를 사용하여 PTZ 카메라를 조절하여 그 방향 지역의 해당 영상을 획득하고 전송될 수 있도록 지원한다. 제안하는 소리 감시 시스템은 전경 위험 소리들을 안정적으로 검출하고, 79%의 정확도로 위험소리들을 분류하고, 작은 오차범위 이내 음원 방향 추정 성능을 나타냄을 실험결과를 통해 확인하였다.

Focal Loss와 앙상블 학습을 이용한 야생조류 소리 분류 기법 (Wild Bird Sound Classification Scheme using Focal Loss and Ensemble Learning)

  • 이재승;유제혁
    • 한국산업정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.15-25
    • /
    • 2024
  • 효과적인 동물 생태계 분석을 위해서는 동물 서식 현황을 자동으로 파악할 수 있는 동물 관제 기술이 중요하다. 특히 울음소리로 종을 판별하는 동물 소리 분류 기술은 영상을 통한 판별이 어려운 환경에서 큰 주목을 받고 있다. 기존 연구들은 단일 딥러닝 모델을 사용하여 동물 소리를 분류하였으나, 야외 환경에서 수집된 동물 소리는 많은 배경 잡음을 포함하여 단일 모델의 판별력을 악화시키며, 종에 따른 데이터 불균형으로 인해 모델의 편향된 학습을 야기한다. 이에, 본 논문에서는 클래스의 데이터 수를 고려하여 페널티를 부여하는 Focal Loss를 사용한 여러 분류 모델의 예측결과를 앙상블을 통해 결합하여 잡음이 많은 동물 소리를 효과적으로 분류할 수 있는 기법을 제안한다. 공개 데이터 셋을 사용한 실험에서, 제안된 기법은 단일 모델의 평균 성능에 비해 Recall 기준으로 최대 22.6%의 성능 개선을 달성하였다.

전이 학습과 SHAP 분석을 이용한 설명가능한 동물 울음소리 분류 기법 (Explainable Animal Sound Classification Scheme using Transfer Learning and SHAP Analysis)

  • 이재승;문재욱;박성우;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.768-771
    • /
    • 2024
  • 인간의 산업 활동으로 인하여 동물들의 생존이 위협받으면서, 동물의 서식 분포를 효과적으로 파악할 수 있는 자동 야생동물 모니터링 기술의 필요성이 점점 더 커지고 있다. 그중에서도 동물 소리 분류 기술은 시각적으로 식별이 어려운 동물에게도 효과적으로 적용할 수 있는 장점으로 인하여 널리 사용되고 있다. 최근 심층학습 기반의 분류 모델들이 좋은 판별 성능을 보여주고 있어 동물 소리 분류에 많이 사용되고 있지만, 희귀종과 같이 개체 수가 적어 데이터가 부족한 경우에는 학습이 제대로 이루어지지 않을 수 있다. 또한, 이러한 모델들은 모델 내부에서 일어나는 추론 과정을 알 수 없어 결과를 완전히 신뢰하고 사용하는 데 제약이 따른다. 이에 본 논문에서는 전이 학습을 통해 데이터 부족 문제를 고려하고, SHAP을 이용하여 분류 모델의 추론 과정을 해석하는 설명가능한 동물 소리 분류 기법을 제안한다. 실험 결과, 제안하는 기법은 지도 학습을 한 경우보다 분류 성능이 향상됨을 확인하였으며, SHAP 분석을 통해 모델의 분류 근거를 이해할 수 있었다.

반려묘 울음소리를 이용한 감정 분류 시스템 (Cat Emotion Classification System using Cat Meowing)

  • 채희찬;이종욱;최윤아;박대희;정용화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.666-668
    • /
    • 2018
  • 최근 반려동물을 키우는 가구 수의 증가와 함께, 반려묘에 대한 관심도 상당히 증가하고 있다. 특히 반려인은 반려묘와의 원활한 의사소통과 교감을 바라지만 반려묘의 세세한 감정 상태를 24시간 내내 파악하는 것은 어려운 일이다. 본 논문에서는 반려묘의 울음소리에 많은 감정 및 상태 정보가 담겨있는 것에 착안하여, 반려묘의 울음소리를 기반으로 감정을 분류하는 시스템을 제안한다. 제안된 시스템은 먼저, 이미 수집된 소리 데이터를 데이터 증폭 방법론을 이용하여 데이터를 확장 한 후, 해당 소리들의 멜 스펙트로그램 정보를 추출한다. 이를 시계열 정보 처리에 효과적인 LSTM에 적용하여 반려묘의 감정 상황을 식별할 수 있도록 학습을 수행한다. 실험 결과, 반려묘의 감정 상태 분류의 가능성을 확인하였다.

동물 소리 수집 및 분류를 위한 오픈 플랫폼 개발 (Development of Open Platform for collecting and classifying animal sounds)

  • 정승원;김충일;문지훈;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.839-841
    • /
    • 2018
  • 인공지능 기술을 활용하여 동물 소리를 분석하고 그 종을 구별하는 기술은 지역의 야생동물 현황 파악이나 생태계 조사 등에 효과적으로 사용될 수 있다. 인공지능 기술을 활용하기 위해서는 많은 동물 소리 샘플이 필요하지만, 현재 그러한 데이터는 녹음 환경이 고도화되어 있는 상용 DB나 전문가 DB 형태로 존재한다. 이러한 데이터만을 학습한 인공지능의 경우 실제 환경에서 녹음된 동물 소리를 식별하는 데 많은 어려움이 예상된다. 따라서 본 논문에서는 다양한 동물 소리를 수집하기 위해 동물 관련 전문가나 일반 사용자 모두 자유롭게 사용할 수 있는 동물 울음소리 수집과 분류를 위한 오픈 플랫폼을 제안한다. 플랫폼에 업로드된 소리 파일은 인공지능의 학습 데이터로 사용하며, 이 인공지능은 사용자에게 소리 파일을 분석한 결과로 해당 동물종과 그에 대한 다양한 생태정보를 제공하고 부가적으로 지역별 동물 통계 및 소리 파일에서의 소리 구간 추출, 소리 파일 공유 등 다양한 기능을 제공한다.

분류와 원통에 의해 발생하는 쐐기소리의 특성 (Characteristics of Edgetones by Jet-Cylinder Interaction)

  • 한희갑;김승덕;안진우;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.235-239
    • /
    • 1996
  • 분류가 모서리에 충돌할 때 발생하는 순음성 소리인 쐐기소리(edgetone)는 공력음향의 대표적인 현상으로서 지금까지 수많은 연구가 있어 왔으며 그 대부분의 특성이 규명되었다고 할 수 있다. 쐐기소리의 발생기구인 되먹임(feedback) 이론을 처음으로 제안한 이는 Powell로서 그는 되먹임사이클의 위상조건에 의하여 주파수특성에 관한 모델을 제안하였으며, 최근 그 모델의 위상인자에 관하여 Kwon은 새로운 값을 제안한 바 있다. 그런데, 쐐기소리의 이론은 주로 분류가 쐐기나 벽에 충돌할 경우에 집중되어 왔으며 분류가 원통에 충돌하여 발생하는 경우에 관한 연구는 Krothapalli의 초음속분류에 관한 연구와 Mochizuki등의 아음속분류에서 원통지름의 영향에 관한 연구를 들 수 있을 뿐이다. Mochizuki등은 원통의 지름이 노즐의 높이보다 작은 경우에 쐐기 소리의 주파수가 원통의 와류이탈(vortex shedding) 주파수와 같은 것을 관찰하였다. 그러나 분류와 원통이 작용하여 발생하는 쐐기소리의 주파수 특성에 관한 이론적 해석을 시도한 연구는 없으며 또한 방사음장의 특성에 관하여도 Han과 Kwon에 의한 모델이 발표된 바 있으나 실험적으로 입증되지 못하였다. 따라서, 본 연구의 목적은 2 fig.1과 같이 2차원 분류가 원통에 충돌할 때 발생하는 쐐기소리의 주파수특성의 정량적인 모델을 세우고 방사음장의 지향특성의 이론 모델을 확립하는 것이다. 먼저 주파수특성을 실험하고 되먹임이론을 적용하여 분석하므로써 유효음원의 위치를 구하고 또한, 수직벽에 작용하여 발생하는 충돌음(impinging tone)의 경우를 실험하여 주파수특성을 비교 고찰하므로써 유효음원의 위치에 관한 이론을 입증한다. 아울러 원통과 평면벽의 각 경우에 방사음장의 지향특성을 측정하고 고찰한다.2,5,6]을 단계별로 고찰하여, 점점 까다로워져 가는 선박 진동규제[3,4]에 대처하고 승무원의 안락성에 대한 욕구, 구조물의 안전성, 장비의 성능보존이 만족되는 저진동 선박의 건조를 위해 향후 해결해야할 과제들을 도출하여 선박진동분야이 연구개발 방향을 제시하고자 한다. 하는 것은 진단의 정밀도에 문제가 있을 것으로 생각된다. 따라서 언어적진리치가 도입되어 [상당히 확실], [확실], [약간 확실] 등의 언어적인 표현을 이용하여 애매성을 표현하게 되었다. 본 논문에서는 간이진단 결과로부터 추출된 애매한 진단결과중에서 가장 가능성이 높은 이상원인을 복수로 선정하고, 여러 종류의 수치화할 수 없는 언어적(linguistic)인 정보ㄷㄹ을 if-then 형식의 퍼지추론으로 종합하는 회전기계의 이상진단을 위한 정밀진단 알고리즘을 제안하고 그 유용성을 검토한다. 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both

  • PDF

광역 스펙트로그램과 심층신경망에 기반한 중첩된 소리의 인식과 영향 분석 (Recognition of Overlapped Sound and Influence Analysis Based on Wideband Spectrogram and Deep Neural Networks)

  • 김영언;박구만
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.421-430
    • /
    • 2018
  • 많은 음성인식 시스템들은 MFCC와 HMM등의 분류 기법을 사용하여 사람의 음성을 인식한다. 그러나 이러한 음성인식 시스템은 단일 음성신호를 인식하는 것을 목적으로 설계되어, 인간과 기계사이의 일대일 음성 인식에는 적합하나, 애완동물 소리와 실내 소리같은 음성보다 다양하고 넓은 주파수의 소리 군으로 중첩된 음향 속에서 설정된 소리를 인식하기에는 제한이 있다. 중첩된 소리들의 주파수는 사람의 목소리보다 높은 최대 20 kHz까지 넓은 주파수 범위로 구성된다. 본 논문에서는 광역 사운드 스펙트로그램과 DNN에 기반한 케라스 시?셜 모델 기법을 활용하여 인지 주파수 범위를 넓게 확대하는 새로운 인식방법을 제안한다. 광역 사운드 스펙트로그램이 본 논문에서 설계된 특징 추출 및 분류 시스템과 같이 넓은 주파수 범위의 다양한 소리를 분석하고 실험하도록 채택되었다. 소리 인식률을 개선하기 위하여, 케라스 시?셜 모델이 사운드 스펙트로그램에 의하여 생성되어 추출된 특징을 사용하여 패턴인식을 수행하기 위한 방법으로 채용되었다. 제안된 특징 추출 및 분류 시스템이 광역 사운드 스펙트로그램과 케라스 시?셜 모델을 채용하여 애완동물 소리와 실내 소리같은 다양한 주파수들로 구성되어 중첩된 음향 속에서 설정된 소리를 우수하게 분류하는 것을 확인하였다. 그리고 중첩된 소리의 크기에 비례하여 인식에 미치는 특성과 영향을 단계별로 비교 분석하였다.