Many voice recognition systems use methods such as MFCC, HMM to acknowledge human voice. This recognition method is designed to analyze only a targeted sound which normally appears between a human and a device one. However, the recognition capability is limited when there is a group sound formed with diversity in wider frequency range such as dog barking and indoor sounds. The frequency of overlapped sound resides in a wide range, up to 20KHz, which is higher than a voice. This paper proposes the new recognition method which provides wider frequency range by conjugating the Wideband Sound Spectrogram and the Keras Sequential Model based on DNN. The wideband sound spectrogram is adopted to analyze and verify diverse sounds from wide frequency range as it is designed to extract features and also classify as explained. The KSM is employed for the pattern recognition using extracted features from the WSS to improve sound recognition quality. The experiment verified that the proposed WSS and KSM excellently classified the targeted sound among noisy environment; overlapped sounds such as dog barking and indoor sounds. Furthermore, the paper shows a stage by stage analyzation and comparison of the factors' influences on the recognition and its characteristics according to various levels of noise.
한국어 모음과 자음의 파형, 스펙트로그램을 통해 다음 사항을 중점적으로 다룬다. - 모음과 자음의 조음 및 음향적 특성, - 모음의 좁힙점과 음향적 특성, - /모음+모음/과 /반모음+모음/의 차이, - 자음의 조음 방법 및 조음장소에 따른 음향적 특성, - 음성환경에 따른 음향적 특성, - 유/무성에 따른 음향적 특성, - 연/경성에 따른 음향적 특성, - 동시조음에 따른 음향적 특성, - 소리의 길이 (중략)
In this paper, we propose an algorithm for the frequency channel segmentation using peaks and valleys in spectrogram. The frequency channel segments means that local groups of channels in frequency domain that could be arisen from the same sound source. The proposed algorithm is based on the smoothed spectrum of the input sound. Peaks and valleys in the smoothed spectrum are used to determine centers and boundaries of segments, respectively. To evaluate a suitableness of the proposed segmentation algorithm before that the grouping stage is applied, we compare the synthesized results using ideal mask with that of proposed algorithm. Simulations are performed with mixed speech signals with narrow band noises, wide band noises and other speech signals.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.343-345
/
2020
본 논문에서는 선택적 노이즈 캔슬링을 위한 환경 인지 기술을 제안한다. 기존의 노이즈 캔슬링은 모든 소리를 구분 없이 차단하여 여러 가지 문제를 유발할 수 있으며 공통된 노이즈 캔슬링 동작으로 각 소음에 최적화된 성능을 보장할 수 없다. 이러한 문제를 해결하기 위해 제안하는 방법은 대표적 오디오 특성인 멜-스펙트로그램과 스펙트로그램 기반의 시간적 특성 벡터를 사용하여 환경 인지를 진행한다. 본 논문에서는 attack, rotation, sawing으로 구성된 3가지 소음과 speech, tonal로 구성된 2가지 비 소음으로 총 5가지 클래스를 분류한다. 제안하는 방법에서 특성 벡터로 멜-스펙트로그램만을 사용했을 때 87.5%의 분류 성능을 보였으며, 스펙트로그램 기반의 시간적 특성을 추가했을 때 분류 성능이 91.2%로 향상되었다.
Journal of the Institute of Convergence Signal Processing
/
v.21
no.3
/
pp.121-126
/
2020
Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.964-966
/
2020
전염성이 매우 강한 돼지 호흡기 질병을 빠른 시간 내에 정확하게 탐지하지 못한다면 해당 돈사는 물론 타지역으로 전파되어 심각한 경제적 손실이 발생한다. 본 논문은 이와 같은 돼지 호흡기 질병을 저가격의 임베디드 보드에서도 탐지가 가능한 시스템을 제안한다. 해당 시스템은 돈사에 설치한 소리센서로부터 돼지의 이상 소리를 자동으로 탐지한 후, 탐지한 소리 시그널을 스펙트로그램으로 변환한다. 마지막으로, 스펙트로그램은 딥러닝 알고리즘에 적용되어 돼지 호흡기 질병을 탐지 및 식별한다. 이 때, 일반 컴퓨터 환경에 비해 비용 부담이 적은 임베디드 환경에서 실행되기 위하여 경량 딥러닝 모델인 MnasNet 을 사용하였으며, 임베디드 보드인 NVIDIA TX-2 에서 해당 시스템의 호흡기 질병 식별 성능을 확인한 결과 높은 탐지 성능과 실시간 탐지가 가능함을 확인하였다.
The railway point machine is an especially important component that changes the traveling direction of a train. Failure of the point machine may cause a serious railway accident. Therefore, early detection of failures is important for the management of railway condition monitoring systems. In this paper, we propose a noise-robust anomaly detection method in railway condition monitoring systems using sound data. First, we extract feature vectors from the spectrogram image of sound signals and convert it into modulation feature to ensure robust performance, and lastly, use the support vector machine (SVM) as an early anomaly detector of railway point machines. By the experimental results, we confirmed that the proposed method could detect the anomaly conditions of railway point machines with acceptable accuracy even under noisy conditions.
In this paper, we propose a method for classifying environmental sound for selective noise cancellation in industrial sites. Noise in industrial sites causes hearing loss in workers, and researches on noise cancellation have been widely conducted. However, the conventional methods have a problem of blocking all sounds and cannot provide the optimal operation per noise type because of common cancellation method for all types of noise. In order to perform selective noise cancellation, therefore, we propose a method for environmental sound classification based on deep learning. The proposed method uses new sets of acoustic features consisting of temporal and statistical properties of Mel-spectrogram, which can overcome the limitation of Mel-spectrogram features, and uses convolutional neural network as a classifier. We apply the proposed method to five-class sound classification with three noise classes and two non-noise classes. We confirm that the proposed method provides improved classification accuracy by 6.6% point, compared with that using conventional Mel-spectrogram features.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.4
/
pp.459-466
/
2020
The sound collected through the multi-rotor unmanned aerial vehicle (UAV) includes the ego noise generated by the motor or propeller, or the wind noise generated during the flight, and thus the quality is greatly impaired. In a multi-rotor UAV environment, both the magnitude and phase of the target sound are greatly corrupted, so it is necessary to enhance the sound in consideration of both the magnitude and phase. However, it is difficult to improve the phase because it does not show the structural characteristics. in this study, we propose a CNN-based complex spectrogram enhancement method that removes noise based on complex spectrogram that can represent both magnitude and phase. Experimental results reveal that the proposed method improves enhancement performance by considering both the magnitude and phase of the complex spectrogram.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.666-668
/
2018
최근 반려동물을 키우는 가구 수의 증가와 함께, 반려묘에 대한 관심도 상당히 증가하고 있다. 특히 반려인은 반려묘와의 원활한 의사소통과 교감을 바라지만 반려묘의 세세한 감정 상태를 24시간 내내 파악하는 것은 어려운 일이다. 본 논문에서는 반려묘의 울음소리에 많은 감정 및 상태 정보가 담겨있는 것에 착안하여, 반려묘의 울음소리를 기반으로 감정을 분류하는 시스템을 제안한다. 제안된 시스템은 먼저, 이미 수집된 소리 데이터를 데이터 증폭 방법론을 이용하여 데이터를 확장 한 후, 해당 소리들의 멜 스펙트로그램 정보를 추출한다. 이를 시계열 정보 처리에 효과적인 LSTM에 적용하여 반려묘의 감정 상황을 식별할 수 있도록 학습을 수행한다. 실험 결과, 반려묘의 감정 상태 분류의 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.