• Title/Summary/Keyword: 셋업

Search Result 162, Processing Time 0.019 seconds

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

USABILITY EVALUATION OF PLANNING MRI ACQUISITION WHEN CT/MRI FUSION OF COMPUTERIZED TREATMENT PLAN (전산화 치료계획의 CT/MRI 영상 융합 시 PLANNING MRI영상 획득의 유용성 평가)

  • Park, Do-Geun;Choe, Byeong-Gi;Kim, Jin-Man;Lee, Dong-Hun;Song, Gi-Won;Park, Yeong-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2014
  • Purpose : By taking advantage of each imaging modality, the use of fused CT/MRI image has increased in prostate cancer radiation therapy. However, fusion uncertainty may cause partial target miss or normal organ overdose. In order to complement such limitation, our hospital acquired MRI image (Planning MRI) by setting up patients with the same fixing tool and posture as CT simulation. This study aims to evaluate the usefulness of the Planning MRI through comparing and analyzing the diagnostic MRI image and Planning MRI image. Materials and Methods : This study targeted 10 patients who had been diagnosed with prostate cancer and prescribed nonhormone and definitive RT 70 Gy/28 fx from August 2011 to July 2013. Each patient had both CT and MRI simulations. The MRI images were acquired within one half hour after the CT simulation. The acquired CT/MRI images were fused primarily based on bony structure matching. This study measured the volume of prostate in the images of Planning MRI and diagnostic MRI. The diameters at the craniocaudal, anteroposterior and left-to-right directions from the center of prostate were measured in order to compare changes in the shape of prostate. Results : As a result of comparing the volume of prostate in the images of Planning MRI and diagnostic MRI, they were found to be $25.01cm^3$(range $15.84-34.75cm^3$) and $25.05cm^3$(range $15.28-35.88cm^3$) on average respectively. The diagnostic MRI had an increase of 0.12 % as compared with the Planning MRI. On the planning MRI, there was an increase in the volume by $7.46cm^3$(29 %) at the transition zone directions, and there was a decrease in the volume by $8.52cm^3$(34 %) in the peripheral zone direction. As a result of measuring the diameters at the craniocaudal, anteroposterior and left-to-right directions in the prostate, the Planning MRI was found to have on average 3.82cm, 2.38cm and 4.59cm respectively and the diagnostic MRI was found to have on average 3.37cm, 2.76cm and 4.51cm respectively. All three prostate diameters changed and the change was significant in the Planning MRI. On average, the anteroposterior prostate diameter decrease by 0.38cm(13 %). The mean right-to-left and craniocaudal diameter increased by 0.08cm(1.6 %) and 0.45cm(13 %), respectively. Conclusion : Based on the results of this study, it was found that the total volumes of prostate in the Planning MRI and the diagnostic MRI were not significantly different. However, there was a change in the shape and partial volume of prostate due to the insertion of prostate balloon tube to the rectum. Thus, if the Planning MRI images were used when conducting the fusion of CT/MRI images, it would be possible to include the target in the CTV without a loss as much as the increased volume in the transition zone. Also, it would be possible to reduce the radiation dose delivered to the rectum through separating more clearly the reduction of peripheral zone volume. Therefore, the author of this study believes that acquisition of Planning MRI image should be made to ensure target delineation and localization accuracy.