• Title/Summary/Keyword: 셀프센터링 시스템

Search Result 3, Processing Time 0.018 seconds

Comparative Study on Seismic Performance of Viscously Damped Self-Centering SDOF Systems with Elasto-Plastic SDOF Systems (점성 감쇠기를 가진 셀프 센터링 단자유도 시스템과 탄소성거동의 단자유도 시스템의 내진성능 비교에 관한 연구)

  • Kim, Hyung-Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.553-561
    • /
    • 2010
  • The purpose of this paper is to analytically find the approximate supplement damping ratio of the viscous damper installed in self-centering (SC) single-degree-of-freedom (SDOF) systems with maximum displacements that are similar to those of elasto-plastic (EP) SDOF systems. The behavior of an SC SDOF system under harmonic cyclic loading was first described. Then an analytical model that can capture the behavior of the viscously damped SC SDOF system was introduced. Analysis parameters that characterize the hysteresis of the EP and SC SDOF systems were chosen, and nonlinear time-history analyses were performed using 20 historical accelerograms. Most of the SC SDOF systems with viscous dampers with approximately 10-15% damping ratios presented mean maximum displacement values that were similar to those of the EP SDOF systems. To investigate in detail the seismic performance of both systems, three EP SDOF systems and six corresponding SC SDOF systems were selected. The analyses showed that all the SC SDOF systems eliminated the residual displacements after the end of their shaking, and that the SC SDOF systems with 15% damping ratios performed better than the EP SDOF systems in terms of maximum displacement and acceleration response.

Inelastic Seismic Response of Asymmetric-Plan Self-Centering Energy Dissipative Braced Frames (비정형 셀프센터링 가새골조의 비탄성 지진응답)

  • Kim, Jin-Koo;Christopoulos, C.;Choi, Hyun-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2008
  • A self-centering energy-dissipative(SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy such as the buckling restrained brace(BRB) system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In order to investigate the effects of torsion on the SCED brace and BRB systems, nonlinear time history analyses were used to compare the responses of 3D model structures with three different amounts of frame eccentricity. The results of the analysis showed that the interstory drifts of SCED braced frames are more uniform than those of BRB frames, without regard to irregularity. The residual drift and residual rotation responses tended to decrease as irregularity increased. For medium-rise structures, the drift concentration factors(DCFs) for SCED systems were lower than those for BRB frames. This means that SCED-braced frames deform in a more uniform manner with respect to building height. The effect of the torsional irregularity on the magnitude of the DCFs was small.

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.