• Title/Summary/Keyword: 센싱 노드 선택

Search Result 21, Processing Time 0.031 seconds

Congestion Control based on Genetic Algorithm in Wireless Sensor Network (무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어)

  • Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • Wireless sensor network is based on an event driven system. Sensor nodes collect the events in surrounding environment and the sensing data are relayed into a sink node. In particular, when events are detected, the data sensing periods are likely to be shorter to get the more correct information. However, this operation causes the traffic congestion on the sensor nodes located in a routing path. Since the traffic congestion generates the data queue overflows in sensor nodes, the important information about events could be missed. In addition, since the battery energy of sensor nodes exhausts quickly for treating the traffic congestion, the entire lifetime of wireless sensor networks would be abbreviated. In this paper, a new congestion control method is proposed on the basis of genetic algorithm. To apply genetic algorithm, the data traffic rate of each sensor node is utilized as a chromosome structure. The fitness function of genetic algorithm is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets, the proposed method selects the optimal data forwarding sensor nodes for relieving the traffic congestion. In experiments, when compared with other methods to handle the traffic congestion, the proposed method shows the efficient data transmissions due to much less queue overflows and supports the fair data transmission between all sensor nodes as possible. This result not only enhances the reliability of data transmission but also distributes the energy consumptions across the network. It contributes directly to the extension of total lifetime of wireless sensor networks.

MAC Protocol considering Data Urgency for EH-WSN (EH-WSN에서 데이터의 긴급성을 고려한 MAC프로토콜)

  • Park, Gwanho;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.304-305
    • /
    • 2019
  • Wireless sensor networks are used in various applications due to the flexibility of network. In particular, the energy harvesting wireless sensor network (EH-WSN) has been introduced to solve the power limitation problem, and the application range of the sensor network is further expanded. In order to transmit the sensed data to the destination node, the MAC protocol considering the power of the nodes has been studied. The power situation and the urgency of the data are important elements of data transmission, and a medium access control protocol that comprehensively considers data urgency and power of nodes is required. In this paper, we propose a medium access control protocol which can select relay nodes according to power situation and urgency of data.

  • PDF

Publish/Subscrib Service based Selective Sensor Data Monitoring System using Mesh Network (메쉬 네트워크에서 가입/게시(subscribe/publish) 서비스기반 선택적 센서정보 모니터링 시스템)

  • Kim, Yong-Hyuck;Kim, Young-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.493-502
    • /
    • 2010
  • In this paper we propose a scalable sensor network system that makes mesh network among the sink nodes to solve the scalability problem of existing sensor network which is caused by multi-hop networking between the sensor nodes. In the proposed system, the sink nodes have the wireless networking ability to communicate with another sink nodes in mesh fashion, and with the monitoring nodes which is located in the local area or internet area. Especially, the system includes L4(Application Layer) routing mechanism that provides subscribe/publish service to serve selective transmission of sensor data to the specific monitoring nodes. The collected sensor data is transmitted to the monitoring nodes when the sensor data is matched with the monitoring node's interesting value.

A Cluster Formation Scheme with Remaining Energy Level of Sensor Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 잔여 에너지 레벨을 이용한 클러스터 형성 기법)

  • Jang, Kyung-Soo;Kangm, Jeong-Jin;Kouh, Hoon-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • Sensor nodes in wireless sensor networks operate in distributed environments with limited resources and sensing capabilities. Especially, a sensor node has a small energy. After the sensor nodes are distributed in some area, it is not accessible to the area. AIso, a battery of sensor node cannot change. One of the hot issues in wireless sensor networks maximizes the network lifetime through minimizing the energy dissipation of sensor nodes. In LEACH, the cluster head is elected based on a kind of probability method without considering remaining energy of sensor node. In this paper, we propose a cluster formation scheme that the network elect the node, which has higher energy level than average energy level of overall sensor network, as cluster head node. We show the superiority of our scheme through computer simulation.

  • PDF

The Selective Transmission of Sensor Data for a Water Quality Monitoring System (수질 모니터링 시스템을 위한 센서 데이터의 선택적 전송방법)

  • Kwon, Dae-Hyeon;Oh, Ryeom-Duk;Cho, Soo-Sun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.51-58
    • /
    • 2010
  • In this paper, we introduce various attempts to transmit sensor data efficiently for design of a water quality monitoring system under the USN environment. The representative methods are the sensor management on a sensor node and the clustering on a sink node. The sensor management includes controls of sensing intervals, data accumulations, and data transmissions. And the clustering is one of efficient data compression methods using data mining technology. From the experimental results we confirmed that the proposed transmission method using the sensor management and the clustering outperformed common transmission method.

Design of QoS based MAC protocol considering data urgency for Energy harvesting wireless sensor networks (에너지 하베스팅 센서네트워크에서 데이터의 긴급성을 고려한 QoS기반 MAC프로코콜 설계)

  • Park, Gwanho;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.1004-1010
    • /
    • 2019
  • In the EH-WSN (Energy harvesting wireless sensor network), a MAC (medium access control) protocol is required to select a relay node considering the power status of a node. Existing EH-WSN studies emphasize the power aspect, so it does not consider the QoS like the urgency of the sensed data. The required power and transmission delay must be changed according to the urgency so that the medium access control according to the data QoS can be performed. In case of relay node, relaying data without consideration of data urgency and node power may cause delay due to power shortage in case of urgent data. In this paper, we designed a MAC protocol that minimizes the power shortage that can occur during emergency data generation. For this, relay node requirements are set differently according to the urgency of data. The performance was analyzed through simulation. Simulation results show the reduced latency and improved reliability of urgent data transmission.

A Mobile-Sink based Energy-efficient Clustering Scheme in Mobile Wireless Sensor Networks (모바일 센서 네트워크에서 모바일 싱크 기반 에너지 효율적인 클러스터링 기법)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the active research into wireless sensor networks has led to the development of sensor nodes with improved performance, including their mobility and location awareness. One of the most important goals of such sensor networks is to transmit the data generated by mobile sensors nodes. Since these sensor nodes move in the mobile wireless sensor networks (MWSNs), the energy consumption required for them to transmit the sensed data to the fixed sink is increased. In order to solve this problem, the use of mobile sinks to collect the data while moving inside the network is studied herein. The important issues are the mobility and energy consumption in MWSNs. Because of the sensor nodes' limited energy, their energy consumption for data transmission affects the lifetime of the network. In this paper, a mobile-sink based energy-efficient clustering scheme is proposed for use in mobile wireless sensor networks (MECMs). The proposed scheme improves the energy efficiency when selecting a new cluster head according to the mobility of the mobile sensor nodes. In order to take into consideration the mobility problem, this method divides the entire network into several cluster groups based on mobile sinks, thereby decreasing the overall energy consumption. Through both analysis and simulation, it was shown that the proposed MECM is better than previous clustering methods in mobile sensor networks from the viewpoint of the network energy efficiency.

Energy Efficient Distributed Intrusion Detection Architecture using mHEED on Sensor Networks (센서 네트워크에서 mHEED를 이용한 에너지 효율적인 분산 침입탐지 구조)

  • Kim, Mi-Hui;Kim, Ji-Sun;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.151-164
    • /
    • 2009
  • The importance of sensor networks as a base of ubiquitous computing realization is being highlighted, and espicially the security is recognized as an important research isuue, because of their characteristics.Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop security Intrusion Detection System (IDS) that can survive malicious attacks from "insiders" who have access to keying materials or the full control of some nodes, taking their charateristics into consideration. In this perper, we design a distributed and adaptive IDS architecture on sensor networks, respecting both of energy efficiency and IDS efficiency. Utilizing a modified HEED algorithm, a clustering algorithm, distributed IDS nodes (dIDS) are selected according to node's residual energy and degree. Then the monitoring results of dIDSswith detection codes are transferred to dIDSs in next round, in order to perform consecutive and integrated IDS process and urgent report are sent through high priority messages. With the simulation we show that the superiorities of our architecture in the the efficiency, overhead, and detection capability view, in comparison with a recent existent research, adaptive IDS.

An Efficient Routing Protocol Considering Path Reliability in Cognitive Radio Ad-hoc Networks (인지 무선 애드혹 네트워크에서 경로 신뢰성을 고려한 효율적인 라우팅 기법)

  • Choi, Jun-Ho;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.730-742
    • /
    • 2014
  • In the case of On-demand routing protocol in cognitive radio ad-hoc networks, broadcasting of control packets may occur common control channel overload and packet collisions during the routing procedure. This situation is to increase the overhead of path finding and also limited to find the accurate and reliable path. Since reliable channel and path finding is restricted, path life time is shorten and path reliability is reduced. In this paper, we propose a new routing algorithm that reduces control channel overhead and increases path life time by considering the probability of appearance of primary user and channel status of neighbor nodes. Each node performs periodic local sensing to detect primary user signal and to derive primary user activity patterns. The probability of primary appearance on the current channel and the channel status can be obtained based on the periodic sensing. In addition, each node identifies the quality of the channel by message exchange through a common channel with neighbor nodes, then determines Link_Levels with neighbor nodes. In the proposed method, the Link Level condition reduces the number of control messages that are generated during the route discovery process. The proposed method can improve path life time by choosing a path through Path_Reliability in which stability and quality are weighted depending on the location. Through simulation, we show that our proposed algorithm reduces packet collisions and increases path life time in comparison with the traditional algorithm.

A Bottom up Filtering Tuple Selection Method for Continuous Skyline Query Processing in Sensor Networks (센서 네트워크에서 연속 스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법)

  • Sun, Jin-Ho;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.280-291
    • /
    • 2009
  • Skyline Query processing is important to wireless sensor applications in order to process multi-dimensional data efficiently. Most skyline researches about sensor network focus on minimizing the energy consumption due to the battery powered constraints. In order to reduce energy consumption, Filtering Method is proposed. Most existing researches have assumed a snapshot skyline query processing and do not consider continuous queries and use data generated in ancestor node. In this paper, we propose an energy efficient method called Bottom up filtering tuple selection for continuous skyline query processing. Past skyline data generated in child nodes are stored in each sensor node and is used when choosing filtering tuple. We also extend the algorithms, called Support filtering tuple(SFT) that is used when we choose the additional filtering tuple. There is a temporal correlation between previous sensing data and recent sensing data. Thus, Based on past data, we estimate current data. By considering this point, we reduce the unnecessary communication cost. The experimental results show that our method outperforms the existing methods in terms of both data reduction rate(DRR) and total communication cost.