• 제목/요약/키워드: 센서 구성

검색결과 3,534건 처리시간 0.028초

수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정 (Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method)

  • 이민수;박주한;조성식;문민규;류다운;이훈택;이호진;김수경;김태경;변시연;전지현;나라얀 부살;김현석
    • 한국농림기상학회지
    • /
    • 제22권4호
    • /
    • pp.327-339
    • /
    • 2020
  • 증산은 물이 기공을 통해 대기 중으로 이동하는 과정으로, 지표면의 물은 상당부분 증산을 통해 대기 중으로 이동한다. 에디공분산, 수분 수지 측정법 등의 증산량을 측정하는 방법이 있지만, 수종 및 임분의 구성 요소별 증산량의 차이를 비교하기 위해서는 개체목 증산량 측정이 필요하다. 개체목 증산량을 측정하기 위해 수액의 온도차를 이용한 수액류 측정법을 가장 널리 이용하고 있지만, 넓은 범위의 지역을 장기간 조사하기에 한계가 있다. 따라서 큰 공간적 규모에 대해 수액류 및 증산량에 대한 연구를 하기 위해서는 각 지역별로 측정한 데이터의 공유가 필요하다. 본 연구팀은 태화산 학술림에서 열손실탐침법을 이용하여 2011년부터 잣나무(Pinus koraiensis) 18본, 2013년부터 갈참나무(Quercus aliena) 16본을 대상으로 수액류를 측정하고 있으며, 광릉수목원에서도 열손실탐침법을 이용하여, 2013년부터 전나무(Abies holophylla) 18본, 졸참나무(Quercus serrata) 7본, 서어나무(Carpinus laxiflora) 3본, 까치박달(Carpinus cordata) 3본을 대상으로 수액류를 측정하고 있다. 구례 지리산 조사지에서는 열 파동법으로 2018년부터 산벚나무(Prunus sargentii), 낙엽송(Larix kaempferii), 2019년에는 추가로 상수리나무(Quercus accutisima), 소나무(Pinus densiflora), 물푸레나무(Fraxinus rhynchophylla)를 대상으로 수액류를 측정하였으며, 2020년에는 편백(Chamecypans obtuse), 잣나무(P. koraiensis), 자작나무(Betulla platyphylla), 전나무(A. holophylla), 곰솔(Pinus thrunbergii)을 대상으로 수액류를 측정하고 있다. 우리나라 산림의 수액류 데이터를 더욱 활발하게 공유하여 국내 산림생태계에서 개체목과 임분의 수액류와 증산의 환경민감성 등 다양한 연구에 기여할 것으로 기대한다.

강우 강도에 따른 대기 중 미세먼지 저감효과와 강우수질 특성 연구 (The Washing Effect of Precipitation on PM10 in the Atmosphere and Rainwater Quality Based on Rainfall Intensity)

  • 박혜민;변명화;김태용;김재진;류종식;양민준;최원식
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1669-1679
    • /
    • 2020
  • 본 연구는 강우 강도에 따른 대기 중 미세먼지(particulate matter, PM) 저감효과와 미세먼지를 구성하는 주요 수용성 이온에 의한 빗물 수질(pH, 전기전도도(electrical conductivity, EC), 수용성 이온 농도) 변화를 평가하였다. 2020년 3월부터 7월까지 총 6번의 강우를 대상으로 부산 부경대학교 캠퍼스에 집수장치를 설치하여 pH와 EC를 실시간 측정하였으며, 강우의 양이온(Na+, Mg2+, K+, Ca2+, NH4+) 및 음이온(Cl-, NO3-, SO42-)의 농도는 이온크로마토그래피(ion chromatography, IC)를 이용하여 분석하였다. PM10 농도는 강우 전후로 자체제작한 미세먼지 센서를 이용하여 실시간으로 측정하였다. 총 282개의 빗물 샘플의 수질을 분석한 결과, 초기 강우의 pH는 평균 4.3으로 산성도가 높았으며, EC는 평균 81.9 μS/cm으로 평균 NO3- (5.4 mg/L), Ca2+ (4.2 mg/L), Cl-(4.1 mg/L)의 농도가 높게 검출되었다. 그리고 강우가 지속됨에 따라 pH는 증가하는 경향을 보였으며 EC는 상대적으로 감소하는 경향을 보였다. 강우 강도가 7.5 mm/h 이상(heavy rain)일 때 대기 중 평균 60% 이상의 PM10 농도 저감효율을 보였으며, 강우 강도 5 mm/h 이하(light rain)일 때 평균 40% 이하의 저감효율이 나타났다. 빗물 수질 분석 결과, 강우 강도가 증가할수록 초기 강우의 산성도와 EC가 증가하는 경향을 보였으며 초기 강우 내 이온 농도 또한 높은 농도로 검출되었다. 이는 대기 중 PM10이 초기의 강도 높은 강우에 따른 저감효과에 상당한 영향을 받는 것으로 판단된다.

통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측 (Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation)

  • 한석기;주지용;이준호;박상영;김영수;정용석;정도환;허준;이기훈
    • 한국광학회지
    • /
    • 제33권4호
    • /
    • pp.167-176
    • /
    • 2022
  • 적응 광학(adaptive optics, AO)은 대기 외란을 실시간으로 보정하는 기술을 말하고, 이러한 적응광학의 효율적 개발을 위하여, 다양한 성능 예측 기법을 도입하여 적응광학이 적용된 시스템 성능 예측을 실시한다. 적응광학의 성능 예측 기법으로 자주 사용되는 기법으로는 통계분석, 전산모사 및 광학 벤치 테스트가 있다. 통계분석에서는 적응광학 시스템을 통계 분석 모델로 가정하여 오차값(분산)의 제곱을 전부 합쳐 스트렐비를 간단하게 추정한다. 다만, 하위 변수 간의 상관 관계는 무시되어 이에 따른 추정의 오류는 존재한다. 다음으로, 전산모사는 대기 난류, 파면센서, 변형거울, 폐쇄 루프 등 모든 구성요소를 가능한 한 실제와 가깝게 모델링하고, 시간 흐름에 따른 적응광학 시스템의 변화를 모두 구현하여 성능 예측을 수행한다. 다만, 전산모사 모델과 현실 사이에는 여전히 일부 차이가 있어, 광학 벤치 테스트를 통하여 시스템 성능을 확인한다. 최근 국내에서 개발된 변형 거울을 적용한 1.6 m 지상 망원경용 적응광학 시스템을 개발 중에 있어, 이에 적용 가능한 적응광학 시스템을 통하여 성능 예측 기법이 요구되며 동시에 성능 예측 기법의 비교를 진행하고자 한다. 앞서 언급된 통계분석 및 전산모사를 이용하여 시스템 성능 예측을 수행하였으며, 성능 예측의 분석을 위해 각각의 성능 예측 기법의 망원경 및 적응광학 시스템 모델링 과정 및 결과를 제시하였다. 이때 성능 예측을 위한 대기 조건으로는 보현산 관측 중앙값(median)을 적용하였다. 그 결과 통계 분석 방법의 경우 평균 스트렐 비가 0.31이 도출됨을 확인하였고, 전산모사 방법의 경우 평균 스트렐 비가 0.32를 가짐을 확인함으로써 두 방법에 의한 예측이 거의 유사함을 확인할 수 있었다. 추가적으로, 전산모사의 경우 해석 결과의 신뢰성을 확보하기 위하여, 모사 시간이 대기 임계 시간 상수의 약 240배인 0.9초 이상 수행되어야 함을 알 수 있었다.

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.