• Title/Summary/Keyword: 센서 개수

Search Result 232, Processing Time 0.028 seconds

A Study on Scalable Bluetooth Piconet for Secure Ubiquitous (안전한 유비쿼터스를 위한 확장성 있는 블루투스 피코넷에 관한 연구)

  • Seo Dae-Hee;Lee Im-Yeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.5
    • /
    • pp.13-24
    • /
    • 2005
  • Due to the changes in the wireless information environment, there has been an increased demand for various types of information. Accordingly, many wireless communication technologies have been studied and developed. In particular, studies on ubiquitous communications are well underway. Lately, the focus has been on the Bluetooth technology due to its applicability in various environments. Applying Bluetooth connectivity to new environments such as ubiquitous or sensor networks requires finding new wars of using it. Thus, this research analyzed the vulnerability on the limited number of slaves in a piconet configuration through the current Bluetooth communication and proposed an expanded Bluetooth piconet formation method, regardless of the number of slaves inside the piconet even if it is not configured in a scatternet. In the proposed method, we applied a security service and resolved the vulnerabilities of the current piconet by configuring an expanded form of the current tree-shaped structure.

Calibration of a UAV Based Low Altitude Multi-sensor Photogrammetric System (UAV기반 저고도 멀티센서 사진측량 시스템의 캘리브레이션)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 2012
  • The geo-referencing accuracy of the images acquired by a UAV based multi-sensor system is affected by the accuracy of the mounting parameters involving the relationship between a camera and a GPS/INS system as well as the performance of a GPS/INS system. Therefore, the estimation of the accurate mounting parameters of a multi-sensor system is important. Currently, we are developing a low altitude multi-sensor system based on a UAV, which can monitor target areas in real time for rapid responses for emergency situations such as natural disasters and accidents. In this study, we suggest a system calibration method for the estimation of the mounting parameters of a multi-sensor system like our system. We also generate simulation data with the sensor specifications of our system, and derive an effective flight configuration and the number of ground control points for accurate and efficient system calibration by applying the proposed method to the simulated data. The experimental results indicate that the proposed method can estimate accurate mounting parameters using over five ground control points and flight configuration composed of six strips. In the near future, we plan to estimate mounting parameters of our system using the proposed method and evaluate the geo-referencing accuracy of the acquired sensory data.

A Study on Efficient Access Point Installation Based on Fixed Radio Wave Radius for WSN Configuration at Subway Station (지하철 역사 내 WSN 환경구축을 위한 고정 전파범위 기반의 효율적인 AP설치에 관한 연구)

  • An, Taeki;Ahn, Chihyung;Lee, Youngseok;Nam, Myungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.740-748
    • /
    • 2016
  • IT and communication technologies has contributed significantly to the convenience of passengers and the financial management of stations in accordance with the task automation in the field of the urban railway system. The foundation of the above development is based on the large amounts of data from various sensors installed in railways, trains, and stations. In particular, the sensor network that is installed in the station and train has played an important role in the railway information system. The performance of AP is affected by the number of APs and their locations installed in the station. In the installation of APs in stations, the intensity of the radio wave of the AP on its underlying position is considered to determine the number and position of APs. This paper proposes a method to estimate the number of APs and their position based on the structure of the underlying station and implemented a simulator to simulate the performance of the proposed method. The implemented simulator was applied to the decision of AP installation at Busan Seomyeon station to evaluate its performance.

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

A Low Cost Position Sensing Method of Switched Reluctance Motor Using Reflective Type Optical-sensors (반사형 광센서를 이용한 저가형 SRM 위치검출기법)

  • Kim S.J.;Yoon Y.H.;Won C.Y.;Kim H.S.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.148-154
    • /
    • 2005
  • As the exciting point of each phase is determined by the position of rotor, the rotor's accurate position-information is needed for the Switched Reluctance Motor(SRM). When using an absolute-encoder or a resolver, to detect the location of rotor the initial starting is possible, as early sensing of rotor's location is possible. However, this is not appropriate, considering the economical efficiency, and in case of using the incremental-encoder, there's a problem at initial starting as it is not easy to track down the location of rotor at the very beginning. When using Hall-ICs, there's a fault, as it needs a special ring magnet. Considering the initial starting and economical efficiency, the optical sensor technique using a slotted-disk and an opto-interrupter is appropriate, however, this method needs three opto-interrupters and a slotted-disk when using the 6/4 pole SRM. Nevertheless, in this paper, it used only two optical sensors to operate 6/4 pole SRM and made the start up and also forward and reverse operation possible. By excluding the slotted-disc md shortening a optical sensor, it improved the convenience and economical efficiency of the production. Also, as the space for slotted-disc is no more needed, it was able to reduce the size of motor.

Analysis of Block FEC Symbol Size's Effect On Transmission Efficiency and Energy Consumption over Wireless Sensor Networks (무선 센서 네트워크에서 전송 효율과 에너지 소비에 대한 블록 FEC 심볼 크기 영향 분석)

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Young-Su
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.803-812
    • /
    • 2006
  • This paper analytically evaluates the FEC(Forward Error Correction) symbol size's effect on the performance and energy consumption of 802.11 protocol with the block FEC algorithm over WSN(Wireless Sensor Network). Since the basic recovery unit of block FEC algorithms is symbols not bits, the FEC symbol size affects the packet correction rate even with the same amount of FEC check bits over a given WSN channel. Precisely, when the same amount of FEC check bits are allocated, the small-size symbols are effective over channels with frequent short bursts of propagation errors while the large ones are good at remedying the long rare bursts. To estimate the effect of the FEC symbol site, the paper at first models the WSN channel with Gilbert model based on real packet traces collected over TIP50CM sensor nodes and measures the energy consumed for encoding and decoding the RS (Reed-Solomon) code with various symbol sizes. Based on the WSN channel model and each RS code's energy expenditure, it analytically calculates the transmission efficiency and power consumption of 802.11 equipped with RS code. The computational analysis combined with real experimental data shows that the RS symbol size makes a difference of up to 4.2% in the transmission efficiency and 35% in energy consumption even with the same amount of FEC check bits.

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.

An Enhanced DESYNC Scheme for Simple TDMA Systems in Single-Hop Wireless Ad-Hoc Networks (단일홉 무선 애드혹 네트워크에서 단순 TDMA 시스템을 위한 DESYNC 알고리즘 개선 방안)

  • Hyun, Sanghyun;Lee, Jeyul;Yang, Dongmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.293-300
    • /
    • 2014
  • TDMA(Time Division Multiple Access) is a channel access scheme for shared medium networks. The shared frequency is divided into multiple time slots, some of which are assigned to a user for communication. Techniques for TDMA can be categorized into two classes: synchronous and asynchronous. Synchronization is not suitable for small scale networks because it is complicated and requires additional equipments. In contrast, in DESYNC, a biologically-inspired algorithm, the synchronization can be easily achieved without a global clock or other infrastructure overhead. However, DESYNC spends a great deal of time to complete synchronization and does not guarantee the maximum time to synch completion. In this paper, we propose a lightweight synchronization scheme, C-DESYNC, which counts the number of participating nodes with GP (Global Packet) signal including the information about the starting time of a period. The proposed algorithm is mush simpler than the existing synchronization TDMA techniques in terms of cost-effective method and guarantees the maximum time to synch completion. Our simulation results show that C-DESYNC guarantees the completion of the synchronization process within only 3 periods regardless of the number of nodes.

The Biometric Authentication Scheme Capable of Multilevel Security Control (보안레벨 조절이 가능한 바이오메트릭 인증 기법)

  • Yun, Sunghyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • A fingerprint is unique to each person and can be represented as a digital form. As the fingerprint is the part of human body, fingerprint recognition is much more easy to use and secure rather than using password or resident card for user authentication. In addition, as the newly released smart phones have built-in camera and fingerprint sensors, the demand for biometric authentication is increasing rapidly. But, the drawback is that the fingerprint can be counterfeited easily and if it's exposed to the hacker, it cannot be reused. Thus, the original fingerprint template should be transformed for registration and authentication purposes. Existing transformation functions use passcode to transform the original template to the cancelable form. Additional module is needed to input the passcode, so it requires more cost and lowers the usability. In this paper, we propose biometric authentication scheme that is economic and easy to use. The proposed scheme is consisted of cancelable biometric template creation, registration and user authentication protocols, and can control several security levels by configuring the number of fingerprints and scan times. We also analyzed that our scheme is secure against the brute-force attack and the active attacks.

LECEEP : LEACH based Chaining Energy Efficient Protocol (에너지 효율적인 LEACH 기반 체이닝 프로토콜 연구)

  • Yoo, Wan-Ki;Kwon, Tae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.801-808
    • /
    • 2010
  • LEACH, one of hierarchical based routing protocols, was proposed for energy efficiency which is the most important requirement of Wireless Sensor Network(WSN). LEACH protocol is composed of a cluster of certain large number of clusters, which have a cluster head and member nodes. Member nodes send sensing data to their cluster heads, and the cluster heads aggregate the sensing data and transmit it to BS. The challenges of LEACH protocol are that cluster heads are not evenly distributed, and energy consumption to transmit aggregated data from Cluster heads directly to BS is excessive. This study, to improve LEACH protocol, suggests LECEEP that transmit data to contiguity cluster head that is the nearest and not far away BS forming chain between cluster head, and then the nearest cluster head from BS transmit aggregated data finally to BS. According to simulation, LECEEP consumes less energy and retains more number of survival node than LEACH protocol.