• Title/Summary/Keyword: 센서데이터

Search Result 5,186, Processing Time 0.039 seconds

Study on the Maintenance Interval Decisions for Life expectancy in Railway Turnout clearance Detector (철도 분기기 밀착검지기 Life expectancy의 유지보수 주기 결정에 관한 연구)

  • Jang, ByeongMok;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.491-499
    • /
    • 2017
  • Railway turnout systems are one of the most important systems in a railway and abnormal turnout systems can cause serious accidents. To detect an abnormal state of a turnout, turnout clearance detectors are widely used. These devices consider a failure of a turnout clearance detectors to be a failure of the turnout system, that could hinder train operations. Analysis of turnout clearance detector failures is very important to ensure normal train operation. We categorized failures of detectors into four groups to identify failure characteristics of the 140 detectors, which are composed of main line detectors (A), side tracks (B), detectors that are in operation more than 80 times a day (C) and detectors that are in operation fewer than 10 times per day. Failures of detectors have mainly been caused in the control part, in the cables and sensors; failures are classified into four groups (A, B, C and D). We have tried to find failure density distributions for each type of failures, inferring the parameter distributions a priori. Finally, using the Bayesian inference we proposed a maintenance time for control parts through the mean time of the detector, life and the life expectancy.

Development of Driver's Emotion and Attention Recognition System using Multi-modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 운전자의 감정 및 주의력 인식 기술 개발)

  • Han, Cheol-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.754-761
    • /
    • 2008
  • As the automobile industry and technologies are developed, driver's tend to more concern about service matters than mechanical matters. For this reason, interests about recognition of human knowledge and emotion to make safe and convenient driving environment for driver are increasing more and more. recognition of human knowledge and emotion are emotion engineering technology which has been studied since the late 1980s to provide people with human-friendly services. Emotion engineering technology analyzes people's emotion through their faces, voices and gestures, so if we use this technology for automobile, we can supply drivels with various kinds of service for each driver's situation and help them drive safely. Furthermore, we can prevent accidents which are caused by careless driving or dozing off while driving by recognizing driver's gestures. the purpose of this paper is to develop a system which can recognize states of driver's emotion and attention for safe driving. First of all, we detect a signals of driver's emotion by using bio-motion signals, sleepiness and attention, and then we build several types of databases. by analyzing this databases, we find some special features about drivers' emotion, sleepiness and attention, and fuse the results through Multi-Modal method so that it is possible to develop the system.

A Compensation Algorithm for the Position of User Hands Based on Moving Mean-Shift for Gesture Recognition in HRI System (HRI 시스템에서 제스처 인식을 위한 Moving Mean-Shift 기반 사용자 손 위치 보정 알고리즘)

  • Kim, Tae-Wan;Kwon, Soon-Ryang;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.863-870
    • /
    • 2015
  • A Compensation Algorithm for The Position of the User Hands based on the Moving Mean-Shift ($CAPUH_{MMS}$) in Human Robot Interface (HRI) System running the Kinect sensor is proposed in order to improve the performance of the gesture recognition is proposed in this paper. The average error improvement ratio of the trajectories ($AEIR_{TJ}$) in left-right movements of hands for the $CAPUH_{MMS}$ is compared with other compensation algorithms such as the Compensation Algorithm based on the Compensation Algorithm based on the Kalman Filter ($CA_{KF}$) and the Compensation Algorithm based on Least-Squares Method ($CA_{LSM}$) by the developed realtime performance simulator. As a result, the $AEIR_{TJ}$ in up-down movements of hands of the $CAPUH_{MMS}$ is measured as 19.35%, it is higher value compared with that of the $CA_{KF}$ and the $CA_{LSM}$ as 13.88% and 16.68%, respectively.

A Tag Flow-Driven Deployment Simulator for Developing RFID Applications (RFID 애플리케이션 개발을 위한 태그 흐름기반 배치 시뮬레이터)

  • Moon, Mi-Kyeong
    • The KIPS Transactions:PartD
    • /
    • v.17D no.2
    • /
    • pp.157-166
    • /
    • 2010
  • More recently, RFID (Radio Frequency Identification) systems have begun to find greater use in various industrial fields. The use of RFID system in these application domains has been promoted by efforts to develop the RFID tags which are low in cost, small in size, and high in performance. The RFID applications enable the real-time capture and update of RFID tag information, while simultaneously allowing business process change through real-time alerting and alarms. These be developed to monitor person or objects with RFID tags in a place and to provide visibility and traceability of the seamless flows of RFID tags. In this time, the RFID readers should be placed in diverse locations, the RFID flows between these readers can be tested based on various scenarios. However, due to the high cost of RFID readers, it may be difficult to prepare the similar environment equipped with RFID read/write devices. In this paper, we propose a simulator to allow RFID application testing without installing physical devices. It can model the RFID deployment environment, place various RFID readers and sensors on this model, and move the RFID tags through the business processes. This simulator can improve the software development productivity by accurately testing RFID middleware and applications. In addition, when data security cannot be ensured by any fault, it can decide where the problem is occurred between RFID hardware and middleware.

Automatic Extraction of Abstract Components for supporting Model-driven Development of Components (모델기반 컴포넌트 개발방법론의 지원을 위한 추상컴포넌트 자동 추출기법)

  • Yun, Sang Kwon;Park, Min Gyu;Choi, Yunja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.543-554
    • /
    • 2013
  • Model-Driven Development(MDD) helps developers verify requirements and design issues of a software system in the early stage of development process by taking advantage of a software model which is the most highly abstracted form of a software system. In practice, however, many software systems have been developed through a code-centric method that builds a software system bottom-up rather than top-down. So, without support of appropriate tools, it is not easy to introduce MDD to real development process. Although there are many researches about extracting a model from code to help developers introduce MDD to code-centrically developed system, most of them only extracted base-level models. However, using concept of abstract component one can continuously extract higher level model from base-level model. In this paper we propose a practical method for automatic extraction of base level abstract component from source code, which is the first stage of continuous extraction process of abstract component, and validate the method by implementing an extraction tool based on the method. Target code chosen is the source code of TinyOS, an operating system for wireless sensor networks. The tool is applied to the source code of TinyOS, written in nesC language.

A Study on Smart Home Service System Design to Support Aging in Place (Aging in Place 지원을 위한 스마트 홈 서비스 시스템 설계에 관한 연구)

  • Sim, Sungho
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.249-254
    • /
    • 2019
  • According to the recent expansion of the network environment, the spread of smart devices is continuously increasing. With the spread of smart devices such as smart phones, smart pads and wearables, changes are taking place in smart technologies and IT convergence technologies. The development of smart technology is a key element of the 4th industrial technology. The Fourth Industrial Revolution expanded the new service-based industry by adding intelligence to residential, industrial and production environments using IT convergence and smart devices. Research on providing various services using smart technologies, such as smart home, smart factory, smart farm, and smart healthcare, is being conducted in variety. In particular, There is a sharp rise in smart homes due to the proliferation of IoT devices and the growth of sensor technology, control technology, applications, data management, and cloud services. Smart home services using smart technology provide residents with convenient, beneficial services and environments. Smart home service has complemented the existing home network service, but there still are flaws to be modified. In other words, the spread of smart devices, the development of service provider-oriented services, and the interlocking of services have limitations in providing services in consideration of user environment and user state. In order to solve this problem, this study proposes a smart home service system that considers the situation of the elderly.

Human-Computer Interface using sEMG according to the Number of Electrodes (전극 개수에 따른 근전도 기반 휴먼-컴퓨터 인터페이스의 정확도에 대한 연구)

  • Lee, Seulbi;Chee, Youngjoon
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • NUI (Natural User Interface) system interprets the user's natural movement or the signals from human body to the machine. sEMG (surface electromyogram) can be observed when there is any effort in muscle even without actual movement, which is impossible with camera and accelerometer based NUI system. In sEMG based movement recognition system, the minimal number of electrodes is preferred to minimize the inconvenience. We analyzed the decrease in recognition accuracy as decreasing the number of electrodes. For the four kinds of movement intention without movement, extension (up), flexion (down), abduction (right), and adduction (left), the multilayer perceptron classifier was used with the features of RMS (Root Mean Square) from sEMG. The classification accuracy was 91.9% in four channels, 87.0% in three channels, and 78.9% in two channels. To increase the accuracy in two channels of sEMG, RMSs from previous time epoch (50-200 ms) were used in addition. With the RMSs from 150 ms, the accuracy was increased from 78.9% to 83.6%. The decrease in accuracy with minimal number of electrodes could be compensated partly by utilizing more features in previous RMSs.

An extension of multifactor dimensionality reduction method for detecting gene-gene interactions with the survival time (생존시간과 연관된 유전자 간의 교호작용에 관한 다중차원축소방법의 확장)

  • Oh, Jin Seok;Lee, Seung Yeoun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1057-1067
    • /
    • 2014
  • Many genetic variants have been identified to be associated with complex diseases such as hypertension, diabetes and cancers throughout genome-wide association studies (GWAS). However, there still exist a serious missing heritability problem since the proportion explained by genetic variants from GWAS is very weak less than 10~15%. Gene-gene interaction study may be helpful to explain the missing heritability because most of complex disease mechanisms are involved with more than one single SNP, which include multiple SNPs or gene-gene interactions. This paper focuses on gene-gene interactions with the survival phenotype by extending the multifactor dimensionality reduction (MDR) method to the accelerated failure time (AFT) model. The standardized residual from AFT model is used as a residual score for classifying multiple geno-types into high and low risk groups and algorithm of MDR is implemented. We call this method AFT-MDR and compares the power of AFT-MDR with those of Surv-MDR and Cox-MDR in simulation studies. Also a real data for leukemia Korean patients is analyzed. It was found that the power of AFT-MDR is greater than that of Surv-MDR and is comparable with that of Cox-MDR, but is very sensitive to the censoring fraction.

Damage Estimation Method for Jacket-type Support Structure of Offshore Wind Turbine (재킷식 해상풍력터빈 지지구조물의 손상추정기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.64-71
    • /
    • 2017
  • A damage estimation method is presented for jacket-type support structure of offshore wind turbine using a change of modal properties due to damage and committee of neural networks for effective structural health monitoring. For more practical monitoring, it is necessary to monitor the critical and prospective damaged members with a limited number of measurement locations. That is, many data channels and sensors are needed to identify all the members appropriately because the jacket-type support structure has many members. This is inappropriate considering economical and practical health monitoring. Therefore, intensive damage estimation for the critical members using a limited number of the measurement locations is carried out in this study. An analytical model for a jacket-type support structure which can be applied for a 5 MW offshore wind turbine is established, and a training pattern is generated using the numerical simulations. Twenty damage cases are estimated using the proposed method. The identified damage locations and severities agree reasonably well with the exact values and the accuracy of the estimation can be improved by applying the committee of neural networks. A verification experiment is carried out, and the damage arising in 3 damage cases is reasonably identified.

An Efficient Technique for Processing Frequent Updates in the R-tree (R-트리에서 빈번한 변경 질의 처리를 위한 효율적인 기법)

  • 권동섭;이상준;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.261-273
    • /
    • 2004
  • Advances in information and communication technologies have been creating new classes of applications in the area of databases. For example, in moving object databases, which track positions of a lot of objects, or stream databases, which process data streams from a lot of sensors, data Processed in such database systems are usually changed very rapidly and continuously. However, traditional database systems have a problem in processing these rapidly and continuously changing data because they suppose that a data item stored in the database remains constant until It is explicitly modified. The problem becomes more serious in the R-tree, which is a typical index structure for multidimensional data, because modifying data in the R-tree can generate cascading node splits or merges. To process frequent updates more efficiently, we propose a novel update technique for the R-tree, which we call the leaf-update technique. If a new value of a data item lies within the leaf MBR that the data item belongs, the leaf-update technique changes the leaf node only, not whole of the tree. Using this leaf-update manner and the leaf-access hash table for direct access to leaf nodes, the proposed technique can reduce update cost greatly. In addition, the leaf-update technique can be adopted in diverse variants of the R-tree and various applications that use the R-tree since it is based on the R-tree and it guarantees the correctness of the R-tree. In this paper, we prove the effectiveness of the leaf-update techniques theoretically and present experimental results that show that our technique outperforms traditional one.