• Title/Summary/Keyword: 세포유전학적 변화

Search Result 69, Processing Time 0.02 seconds

Study on the Analysis of Chromosome Abnormality by Flow Cytometric and Cytogenetic Methods (유식세포분리기와 세포유전학적 방법에 의한 염색체이상 분석에 관한 연구)

  • Baik, C.S.;Kim, M.K.;Lee, S.M.;Kim, J.H.;Baik, Y.K.;Lee, H.T.;Chung, K.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 1996
  • 골수나 유산물질에 대한 세포유전학적 검사에 있어 통상적인 염색체검사는 검사에 적합한 중기핵상을 얻기 어려워 실패하는 경우가 많다. 이러한 경우에 진단이나 치료에 도움을 줄 수 있는 방법으로 유식세포분리기를 사용하여 단일 세포내 DNA량에 따른 aneuploidy를 추적할 수 있는 가를 확인하기 위해 본 실험을 실시하였다. 79 (혈액 30, 골수 37, 유산물 12)예에서 염색체 검사와 유식세포 분리검사를 동시에 실시하여 각각의 결과를 비교한 결과 79.7% (63/79)의 일치율을 얻었다. 그러나 염색체의 손실이 없는 전좌와 역위의 경우는 물론 작은 조각의 염색체 부분이 늘어나거나 줄어든 경우에 있어서는 유식세포분리방법에 의해서 추적되지 못하였지만, 염색체 검사의 결과를 얻는데 실패한 경우에는 유식세포분리방법이 DNA량의 변화에 대한 정보를 얻을 수 있다는 것을 확인할 수 있었다. 따라서 본 연구결과는 세포유전학적 검사에서 유식세포분리방법이 염색체 검사보다 신속하며 염색체검사가 불가능한 시료에서도 DNA양에 따른 aneuploidy의 추적이 가능하다는 것을 시사한다.

  • PDF

Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells (히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절)

  • Ha, Yang-Hwa;Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Epigenetic regulation is a phenomenon that changes the gene function without changing the underlying DNA sequences. Epigenetic status of chromosome is regulated by mechanisms such as histone modification, DNA modification, and RNAi silencing. In this review, we focused on histone methylation for epigenetic regulation in ES cells. Two antagonizing multiprotein complexes regulate methylation of histones to guide expression of genes in ES cells. The Polycomb repressive complex 2 (PRC2), including EED, EZH2, and SUZ12 as core factors, contributes to gene repression by increasing trimethylation of H3K27 (H3K27me3). In contrast, the Trithorax group (TrxG) complex including MLL is related to gene activation by making H3K4me3. PRC2 and TrxG accompany a variety of accessory proteins. Most prominent feature of epigenetic regulation in ES cells is a bivalent state in which H3K27me3 and H3K4me3 appear simultaneously. Concerted regulation of PRC2, TrxG complex, and H3K4- or H3K27-specific demethylases activate expression of pluripotency-related genes and suppress development-related genes in ES cells. Modified balance of the regulators also enables ES cells to efficiently differentiate to a variety of cells upon differentiating signals. More detailed insights on the epigenetic regulators and their action will lead us to better understanding and use of ES cells for future application.

Histone Lysine Methylation (히스톤 라이신 메틸화)

  • Kwak, Sahng-June
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.444-453
    • /
    • 2007
  • Our genome exists in the form of chromatin, and its structural organization should be precisely regulated with an appropriate dynamic nature for life. The basic unit of chromatin is a nucleosome, which consists of a histone octamer. These nucleosomal histones are subject to various covalent modifications, one of which is methylation on certain lysine residues. Recent studies in histone biology identified many histone Iysine methyltransferases (HKMTs) responsible for respective lysine residues and uncovered various kinds of involved chromatin associating proteins and many related epigenetic phenotypes. With the aid of highly precise experimental tools, multi-disciplinary approaches have widened our understanding of how lysine methylation functions in diverse epigenetic processes though detailed mechanisms remain elusive. Still being considered as a relatively more stable mark than other modifications, the recent discovery of lysine demethylases will confer more flexibility on epigenetic memory transmitted through histone lysine methylation. In this review, advances that have been recently observed in epigenetic phenotypes related with histone lysine methylation and the enzymes for depositing and removing the methyl mark are provided.

Perspective on the Role of Mitochondrial Dynamics in the Nervous System Development (미토콘드리아의 구조적 역동성의 신경계 발생 과정 기능 고찰)

  • Cho, Bong-Ki;Sun, Woong
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2009
  • Recent advances in cell biological and genetic researches have revealed that mitochondrial morphology is highly dynamic and regulated by multiple molecular factors including dynamin-related proteins (DRPs). Considering that the mitochondria play critical roles in the cellular metabolism via ATP synthesis, calcium homeostasis in cooperation with endoplasmic reticulum, and apoptosis, the failure of mitochondrial dynamics is infrequently related to the failure in the normal growth and cellular integrity. In this respect, alteration of mitochondrial dynamics may greatly affect the development of nervous system. In this short review, we discussed molecules involved in the control of mitochondrial dynamics, and provide some perspectives on their significance in the neuronal development.

  • PDF

Midtrimester Amniocentesis for Prenatal Diagnosis (산전 진단을 위한 임신 중기 양수 천자)

  • Kim, Sook-Ryung;Choi, Eun-Jung;Kim, Tae-Yoon;Kwon, Kyoung-Hun;Song, Nam-Hee;Oh, Sun-Kyung;Chi, Hee-Jun
    • Journal of Genetic Medicine
    • /
    • v.5 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • Propose: To analyze the indications and cytogenetic results of midtrimester amniocentesis. Material and Methods: This study reviewed 2,523 cases of midtrimester prenatal genetic amniocentesis performed at MizMedi Hospital between January 2000 and December 2007. Results: The most frequent indication for midtrimester amniocentesis was advanced maternal age (45.9%), followed by positive serum markers (29.9%). Chromosomal aberrations were diagnosed in 110 cases (4.4%), for which numerical aberration accounted for 38 cases (34.5%), structural aberration accounted for 65 cases (59.1%), and mosaicism accounted for 7 cases (6.4%). Among the autosomal aberrations, there were 20 cases of trisomy 21 and 8 cases of trisomy 18. With respect to structural aberrations, there were 14 cases of reciprocal translocation and 8 cases of robertsonian translocation. The frequencies of chromosomal aberrations according to the indication were highest in individuals with a family history of chromosome abnormality 14.0% (8/57) followed by previous congenital anomaly 5.9% (2/34). Conclusion: Midtrimester amniocentesis is an effective tool for prenatal diagnosis. Indications such as advanced maternal age, maternal serum markers, and ultrasound are important for predicting abnormal fetal karyotypes.

  • PDF

Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells (중간엽줄기세포의 노화에 따른 후생유전학적 변화)

  • Oh, Youn Seo;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.724-731
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are characterized by their multipotency capacity, which allows them to differentiate into diverse cell types (bone, cartilage, fat, tendon, and neuron-like cells) and secrete a variety of trophic factors (ANG, FGF-2, HGF, IGF-1, PIGF, SDF-1α, TGF-β, and VEGF). MSCs can be easily isolated from human bone-marrow, fat, and umbilical-cord tissues. These features indicate that MSCs might be of use in stem-cell therapy. However, MSCs undergo cellular senescence during long-term expansion, and this is accompanied by functional declines in stem-cell potency. In the human body, because of their senescence and declines in their microenvironmental niches stem cells fail to maintain tissue homeostasis, and as a result, senescent cells accumulate in tissues. This can lead to age-related diseases, including degenerative disorders and cancers. Recent studies suggest that the number of histone modifications to stem cells’ genomes and aberrant alterations to their DNA methylation increase as stem cells progress into senescence. These epigenetic alterations have been partly reversed with treatments in which DNA methyltransferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors are introduced into replicative senescent-MSCs. This review focuses on epigenetic alteration in replicative senescent-MSCs and explains how epigenetic modifications are widely associated with stem-cell senescences such as differentiation, proliferation, migration, calcium signaling, and apoptosis.

Slowing of the Epigenetic Clock in Schizophrenia (조현병에서 나타나는 후성유전학적 나이 가속도 감속)

  • Yeon-Oh Jeong;Jinyoung Kim;Karthikeyan A Vijayakumar;Gwang-Won Cho
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.730-735
    • /
    • 2023
  • In the past decade, numerous studies have been carried out to quantify aging with the help of artificial intelligence. Using DNA methylation data, various models have been developed; these are commonly called epigenetic clocks. Epigenetic age acceleration is usually associated with disease conditions. Schizophrenia is a mental illness associated with severe mental and physical stress. This disease leads to high mortality and morbidity rates in young people compared with other psychological disorders. In the past, the research community considered this disease to be related to the accelerated aging hypothesis. In the current study, we wanted to investigate the epigenetic age acceleration changes in schizophrenia patients to obtain epigenetic insights into the disease. To measure the epigenetic age acceleration, we used two different DNA methylation clock models, namely, Horvath clock and Epi clock, as these are pan-tissue models. We utilized 450k array data compatible with both clocks. We found a slower epigenetic acceleration in the patients' samples when we used the Epi clock. We further analyzed the differentially methylated CpG sites between the control and cases and performed pathway enrichment analysis. We found that most of the CpGs are involved in neuronal processes.

Flow Cytometric and Cytogenetic Studies in Rhychocypris oxycephalus and R. steindachneri (버들치, Rhynchocypris oxycephalus와 버들개, R. steindachneri의 Flow Cytometry 및 세포유전학적 분석)

  • Park, In-Seok;Choi, Youn;Kim, Yong-Ho;Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of Aquaculture
    • /
    • v.13 no.3
    • /
    • pp.193-196
    • /
    • 2000
  • Rhynchocypris oxycephalus and R. steindachneri show very similar karyotypes: 2n=50(EN=90), consisting of 12 metacentics, 28 submetacentrics and 10 acrocentrics with a gradual decrease in chromosome size, but with significant differences in nuclear DNA content of 2.64 and 2.52 pg/nucleus, respectively (P<0.05). Although the erythrocyte measurement and parameters of two species were similar, R. oxycephalus erythrocyte number was lower than that of R. steindachneri. Mode in karyological evolution within the genus Rhychocypris shows an increase of nuclear DNA without apparent changes in karyotype and erhthrocyte size.

  • PDF

Challenges of Genome Wide Sequencing Technologies in Prenatal Medicine (산전 진단에서의 염기 서열 분석 방법의 의의)

  • Kang, Ji-Un
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.762-769
    • /
    • 2022
  • Genetic testing in prenatal diagnosis is a precious tool providing valuable information in clinical management and parental decision-making. For the last year, cytogenetic testing methods, such as G-banding karyotype analysis, fluorescent in situ hybridization, chromosomal microarray, and gene panels have evolved to become part of routine laboratory testing. However, the limitations of each of these methods demonstrate the need for a revolutionary technology that can alleviate the need for multiple technologies. The recent introduction of new genomic technologies based on next-generation sequencing has changed the current practice of prenatal testing. The promise of these innovations lies in the fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy for prenatal diagnosis. Here, we review the current state of sequencing-based pediatric diagnostics, associated challenges, as well as future prospects.

Recent Findings on the Role of Epigenetic Regulators in the Small-cell Lung Cancer Microenvironment (소세포폐암의 미세환경에서 후성학적 조절인자의 역할에 대한 최신 연구 동향)

  • Min Ho Jeong;Kee-Beom Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.520-530
    • /
    • 2024
  • Tumor suppressor genes (TSGs) play a crucial role in maintaining cellular homeostasis. When the function of these genes is lost, it can lead to cellular plasticity that drives the development of various cancers, including small-cell lung cancer (SCLC), which is known for its aggressive nature. SCLC is primarily driven by numerous loss-of-function mutations in TSGs, often involving genes that encode epigenetic regulators. These mutations pose a significant therapeutic challenge as they are not directly targetable. However, understanding the molecular changes resulting from these mutations might provide insights for developing tumor intervention strategies. We propose that despite the heterogeneous genomic landscape of SCLC, the effects of mutations in patient tumors converge on a few critical pathways that drive malignancy. Specifically, alterations in epigenetic regulators lead to transcriptional dysregulation, pushing mutant cells toward a highly plastic state that makes them immune evasive and highly metastatic. This review will highlight studies showing how an imbalance of epigenetic regulators with opposing functions leads to the loss of immune recognition markers, effectively hiding tumor cells from the immune system. Additionally, we will discuss the role of epigenetic regulators in maintaining neuroendocrine features and how aberrant transcriptional control promotes epithelial-to-mesenchymal transition during tumor development. Although these pathways seem distinct, we emphasize that they often share common molecular drivers and mediators. Understanding the connection among frequently altered epigenetic regulators will provide valuable insights into the molecular mechanisms underlying SCLC development, potentially revealing preventive and therapeutic vulnerabilities for SCLC and other cancers with similar mutations.