• Title/Summary/Keyword: 세종건축

Search Result 146, Processing Time 0.036 seconds

The Design of Eco-friendly Public Library by Applying Passive Architectural Design Techniques - Focused on the Sejong Municipal Public Library - (패시브 건축디자인기법에 의한 친환경 공공도서관 건축설계 - 세종시립도서관 계획안을 중심으로 -)

  • Park, Yeol;Choi, Jin-Hee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 2019
  • Recently the architectural paradigm have been changing into eco-friendly architecture as an sustainable architecture. This social background encourages the development of various methods of building applicable for eco-friendly buildings in architectural design. Among them, passive architecture is an design approach for eco-friendly design that contrasts with technology-based methods through MEP for renewable energy. This study researches the Passive Architectural Design methodology with two points of view; Passive Architectural Design Techniques as a guideline, which defines the elements to consider for passive architecture, and the project of Sejong Municipal Public Library as a case, which is to analysis the architectural design process. The purpose of this study is to propose an eco-friendly public building based on the methodology which is suitable for passive architectural design. Finally, this study suggests that the eco-friendly public building design for passive architecture should consider from the early step of design process, such as concept and building form etc. What is important for the passive architecture is not how much building can produce the natural energy but how less building consumes it to maintain.

Comparative Study on the Traditional Market with the Department Store for Placeness Analysis - Focusing on Namdaemun Market Area - (재래시장 장소성 해석을 위한 백화점과의 비교연구 - 남대문상권을 중심으로 -)

  • Kim, In-Sook;Kim, Young-Ook
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.21-30
    • /
    • 2018
  • The traditional market has formed for itself through a long time thus has special value of the place. The tangible value of the traditional market is high, however, it became jeopardized to be dismantled since it can not cope with the consumption environment of modern society. Modern industrial society provides an inefficiently and standardized solution to the traditional market by ignoring the identity of place only by the value the traditional market in the law of large distribution industry. This study aims to define the placeness of Namdaemun traditional market by considering tangible value of place. The identity of the place was analyzed as a spatial configuration, space organization, and sense of place through the place's physical setting, activities, and meanings by Edward Ralph. Based on the analysis by Ralph, we analyzed the traditional market and compare to the department store, which is the representative of large scale distributor, using comparative method. We performed quantitative and integrative analysis for the placeness and provide a way to appraise the worth of the traditional market by deviating from the traditional evaluation method.

Blast Performance Evaluation based on Finite Element Analysis for Reinforced Concrete Columns with Shear and Flexure Failure Modes (유한요소해석 기반 휨 및 전단 파괴형 철근콘크리트 기둥의 폭발 성능평가)

  • Ye-Eun Kim;Quoc To Bao;Kihak Lee;Jiuk Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.307-314
    • /
    • 2023
  • This study aims to evaluate the blast performance of shear and flexure failure modes of reinforced concrete columns using finite-element analyses. To accomplish this goal, finite-element models of flexure- and shear-governed columns were developed and validated using previous experimental results. A blast simulation model was developed using a coupling-modeling method, and the modeling method was applied to the validated-column models. Blast responses were obtained for various blast loading scenarios, and the blast performance was determined using limits based on ductility and axial loading capacity.

Evaluation of Structural Safety of Cultural Property Altar due to Weathering Damage and Sectional Defection (풍화 손상 및 단면 결손에 따른 문화재 불단의 구조 안전성 평가)

  • Lee, Ga-Yoon;Lee, Sung-Min;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.23-30
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of cultural altar since its bearing capacity has been questioned due to weathering damages and sectional defections. This evaluation process consists two stages; which the first is field investigation and the second is structural modeling and analysis. Based on field investigation, all of the structural members supporting the altar were carefully examined and all the findings were accounted for the development of the structural modeling using the Midas computer program. Using a 3D scanner, the weight of the Buddha statue was applied to the structural modeling. Then, according to the allowable stress design method of KBC2016, the structural safety was evaluated. Based on this result, replacements of several structural members were recommended to increase the structural safety and value of cultural property.

Fabrication of Tensegrity Modules for Spatial Structures (대공간 구조를 위한 텐세그리티 모듈 제작)

  • Lee, Seunghye;Jeong, Jinwoo;Ahn, Seungwhan;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.61-68
    • /
    • 2019
  • A tensegrity module structure is suitable type for spatial structures. Because the tensegrity is composed of set of discontinuous compressive elements (struts) floating within a net of continuous tensile elements (cables), the system can provide the basis for lightweight and strong. However, despite the advantages of tensegrities, design and fabrication of the systems have difficulty because of form-finding methods, pin-connection and the control of prestress. In this paper, the new pin-connection method was invented to make the tensegrity module. The production process and practical implementation of uniformly compressed the tensegrity structures by using a UTM are described. Experiments showed the mechanical response and failure aspects of the tensegrity system.

Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System (CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구)

  • Park, A-Ron;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.

Machine Learning Based Strength Prediction of UHPC for Spatial Structures (대공간 구조물의 UHPC 적용을 위한 기계학습 기반 강도예측기법)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.111-121
    • /
    • 2020
  • There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.

Analytical Study of a Historic Stone Arch Bridge After Retrofit to Evaluate Dynamic Characteristics and Structural Behavior (보수전과 후의 홍예교의 동적특성과 구조성능에 대한 해석연구)

  • Lee, Ga-Yoon;Lee, Sung-Min;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.177-184
    • /
    • 2020
  • This study evaluates safety assessment before and after repair of Seonamsa temple seungseon bridge, which refer to the representative Hongye bridge in Korea. In this approach natural frequency of the structure were considered in the modeling procedure. Trial & error method is applied to obtain the approximate natural frequency before and after retrofit construction. Stiffness of the actual structure was examined to account for the dynamic characteristics of Hongye bridge measured in the field and adjusting parameters in computer modeling. The safety and usability of the stone structure in terms of load bearing capacity and displacement were examined.

Topology design informatics for optimally allocating glue-laminated timber members of steel-composite beams with web-openings (강합성 중공 웨브의 구조용 목재 최적배치를 위한 강성기반 위상설계 정보)

  • Lee, Dongkyu;Banh, Thien Thanh
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.47-55
    • /
    • 2022
  • In this study, we focus on the feasibility of structural topology optimization for a steel-timber composite beam design of optimally allocating glue-laminated timbers into a web with openings under the condition of given steel flanges. The motivation of this study is to topologically take maximal stiffness harmonizing both tension and compression performance of the steel-timber composite beam and become the eco-frandly timber design for buidling members. As a result of this study, the key web-openings allocation becomes triangle spaces, i.e., empty or no materials, of optimal topologies of both a pure timber plate and a steel flange-web timber plate without web-openings. Several applicable examples verify the effectiveness of topology optimization for steel-timber beams with web-openings.