• Title/Summary/Keyword: 세정효율

Search Result 281, Processing Time 0.04 seconds

Comparison of Cleaning Performance of CFC 113 and the Alternatives (CFC 113과 대체세정제의 세정성능 비교)

  • Row, Kyung Ho;Choi, Dai-Ki;Lee, Youn Yong
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.521-530
    • /
    • 1993
  • According to the Montreal Protocol, CFC 113, one of the ozone-depleting substances, will be prohibited to use as a cleaning solvent essentially in the electronic industry. Therefore, the development of the alternative cleaning solvents to CFC 113 is being accelerated. A number of the alternative cleaning solvents are avialable on the market. The alternatives of Axarel 32(DuPont), Cleanthru 750H(KAO Chemical), and EC-Ultra(Petroferm) are chosen for the comparison of cleaning performance with CFC 113. The test methods for measuring the cleaning performance were composed of the measurement of the physical properties, the experiments on the material compatibility with cleaning solvents, the measurement of the evaporation rate, and finally the experiments of the removal efficiency. Normally the basic physical properties of the alternatives had higher boiling points, viscosity and surface tension, which were quite different to those of CFC 113. In terms of solubility of rosin-based flux, the solubilities of abietic acid (nonpolar organic) were similar, but those of the activator (polar organic) in the alternatives were better than CFC 113. The evaporation of the alternatives was very slow, compared to CFC 113, which had much lower boiling point. All the cleaning solvents showed the good material compatibility with FR4 and Cu-coated PCB. The better removal efficiencies of abietic acid were obtained when using the ultrasonic mechanical energy over the dipping method. The experiments also indicated the very slow-eavaporating solvent was not desirable with the dipping cleaning method, and the differences in the removal efficiency of the alternatives with the ultrasonic cleaning method were negligible. Among the alternatives, the overall cleaning performances were obsorved as almost similar. Before selecting the ultimate cleaning solvent, the application of cleaning machine, environmental issues, and economics are simultaneously considered with the cleaning performance.

  • PDF

전기부상법을 이용한 토양세정 유출수 중 유수분리에 관한 연구

  • 소정현;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.99-102
    • /
    • 2002
  • 전기분해에 의한 부상현상을 이용하여 토양세정 후 발생되는 유출수 중의 유수를 분리하기 위한 적정 운전조건에 관하여 고찰하였다. 전압에 의한 유수분리 효율을 관찰한 결과, 전기분해 1시간 후 3V의 전압만으로도 88% 정도의 제거율을 나타내었으며 6V 이상의 전압에서는 90% 정도로 거의 비슷한 제거율을 나타내어 대부분의 에멀젼이 분리됨을 확인할 수 있었다. 동일조건에서는 전기분해 시간이 경과될 수록 분리효율이 향상되었으며, 전극 간격이 넓어질수록 같은 효율을 얻기 위해 소요되는 전압의 크기가 커짐을 알 수 있었다. 전기분해 시 양극에서는 OH$^{-}$의 방전으로 발생되는 산소에 의해 산화반응이 일어나며, 음극에서는 H$^{+}$가 방전되어 발생되는 수소에 의해 환원반응이 일어나며 미세한 기포가 형성된다. 유분의 부상분리 현상은 유분의 (-)charge와 전기분해에 의해서 발생되는 양이온의 결합으로 인한 중화반응 및 음극에서 발생되는 미세 수소기포로 인만 부상분리가 대부분을 차지하며, 전압 및 전기분해 시간이 증가하고 전극 간격이 좁을수록 음극에서 발생되는 미세기포의 양이 증가되어 부상효과가 크게 나타나는 것으로 판단된다. 전극 종류는 구리 > 알루미늄 > 철 > 티타늄 순으로 효율을 나타내었으며, 이는 양극으로 사용된 이러한 금속들의 전기전도도 차이에 의해 일어나는 현상으로 판단된다

  • PDF

Development of CMP process for reducing scratches during ILD CMP (ILD CMP중 Scratch 감소를 위한 CMP 공정기술 개발)

  • Kim, In-Gon;Kim, In-Kwon;Prasad, Y. Nagendra;Choi, Jea-Gon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.59-59
    • /
    • 2009
  • 현재 CMP분야는 광역 평탄화 반도체 소자의 집적화 및 소형화가 진행됨에 따라서 CMP 공정의 중요성은 날로 성장하고 있다. 하지만 이러한 CMP공정은 불가피하게도 scratch, pit, CMP residue와 같은 defect들을 발생시키고 있으며, 점점 선폭이 작아짐에 따라, 이러한 defect들이 반도체 수율에 미치는 영향은 심각해지고 있다. Defect들 중에 특히 scratch는 반도체에 치명적인 circuit failure를 일으키게 된다. 또한 반도체 내구성과 신뢰성을 감소시키게 되고, 누전전류를 증가시키는 등 바람직하지 못한 현상들이 생기게 된다. 본 연구에서는 scratch 와 같은 deflect들을 효율적으로 검출, 분석하고, scratch를 감소시키는데 그 목적이 있다. 본 실험을 위해 8" TEOS wafer와 commercial oxide slurry 및 friction polisher (Poli-500, G&P tech., Korea)를 사용하여 CMP 공정을 진행하였으며, CMP 공정조건은 각각 80rpm/80rpm/1psi(Platen speed/Head speed/Pressure)에서 1분 동안 연마를 한 후 scratch 발생 경향을 살펴보았다. CMP 후 wafer위에 오염되어 있는 slurry residue들을 제거하기 위해 SC-1, HF 세정을 이용하여 최적화된 post-CMP 공정기술을 제안하였다. Scratch 검출 및 분석을 위해 wafer surface analyzer (Surfscan 6200, Tencor, USA)와 optical microscope (LV100D, Nicon, Japan)를 사용하였다. CMP 공정 변수들에 따른 scratch 발생정도를 비교하였으며, scratch 발생 요인들에 따른 scratch 형태 및 발생정도를 살펴보았다. 최적화된 post-CMP 세정 조건은 메가소닉과 함께 SC-1 세정을 실시하여 slurry residue들을 제거한 후, HF 세정을 실시하여 잔여 오염물들을 제거하고 검출이 용이하도록 scratch를 확장시킬 수 있도록 제안하였으며, 100%의 particle removal efficiency (PRE)를 얻을 수 있었다. 실제 CMP 공정후 post-CMP 세정 단계별 scratch 개수를 측정한 결과, SC-1 세정 후 약 220개의 scratch가 검출되었으며, 검출되지 않았던 scratch가 HF 세정 후 확장되어 드러남에 따라 약 500개의 scratch 가 검출되었다.

  • PDF

Chemical Washing of PAH-Contaminated Soil with Cyclodextrins as a Main Surfactant: A Labscale Study (사이클로덱스트린을 이용한 PAH오염토양의 화학적 세정)

  • Sung Hyun Kwon;Daechul Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.295-302
    • /
    • 2002
  • PAHs (polycyclic aromatic hydrocarbons) deposited in soil are one of serious problems against sustainable land use. In this paper, chemical soil flushing in a packed sandy soil matrix using a natural surfactant, $\beta$-cyclodextrin (CD) was studied via a fluorescence spectroscopy and a dye labelling. The contaminants are lipophilic ring compounds- phenanthrene and naphthalene. Sand type and flushing intensity (rate and concentration) are chosen as important investigation variables. The removal efficiencies were proportional to flow rate, concentration, temperature of the flushing solution and voidity of the sand column. Initial sorption of the surfactant onto the soil matrix was found to be a key step while flow shear was more crucial in the latter steps. The residual portion of the surfactant, which was most likely to be due to the initial sorption, would not be so influential on this type of soil washing for long times. These results will be useful in future for pilot scale in situ washing and for establishing better soil washing strategy.

  • PDF

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

A Study of Organic Impurity Removal Efficiency for Waste LCD Touch Panel Glass by Solvents Types (폐 LCD 유리 재활용을 위한 용매 별 유기물 제거 효율에 대한 연구)

  • Kang, Yubin;Choi, Jin-Ju;Park, Jae Layng;Lee, Chan Gi
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.57-64
    • /
    • 2020
  • In this study, removal of OCA and organic impurities for recycling LCD touch panel glass was conducted by mechanical and chemical dissolution methode. Cut mill and oscillation mill were used for mechanical crushing of touch panel, and water, ethanol, dichloromethane were used to remove OCA and organic impurities. As a result of TGA, when applied only dicloromethane in the process, the efficiency of organic removal was to be best. In addition, removal effect of organic impurities increased as the cleaning temperature increased. As a result of zeta potential analysis to confirm the dispersion degree of touch panel glass in the solvent, the absolute value of the zeta potenial of water with the lowest cleaning effect was lower than other solvents, and it was confirmed that efficiency of organic removal is affected not only by the chemical dissolution properties but also the physical dispersion properties in the solvent.

A Study of Cleaning Technology for Zirconium Scrap Recycling in the Nuclear Industry (원자력산업에서 지르코늄 스크랩 재활용을 위한 세정기술에 관한 연구)

  • Lee, Ji-Eun;Cho, Nam-Chan;An, Chang-Mo;Noh, Jae-Soo;Moon, Jong-Han
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.264-271
    • /
    • 2013
  • In this study, we optimized the removal condition of contaminants attached on the scrap surface to recycle the scrap generated from the Zr alloy tube manufacturing process back to the nuclear grade. The main contaminant is remnant of watersoluble cooling lubricant that is used in the pilgering manufacture during the tube production, and it is assumed to be compressed and carbonized on the surface of tube. Zirlo alloy tube of ${\phi}9.50mm$, which has high occurrence frequency of scrap, was selected as the object to be cleaned, and cleaning abilities of reagents were evaluated by measuring the characteristics of contaminants remained and by analyzing the surface of the tube after cleaning process. For evaluation of each cleaning agent, we selected two types of sodium hydroxide series and three types of potassium hydroxide series. Furthermore, to confirm dependence on tempe-rature and ultrasonic intensities, cleaning at the room temperature, $40^{\circ}C$, and $60^{\circ}C$ was conducted, and results showed that higher the cleaning temperature and higher the ultrasonic intensity, better the cleaning effect. As a result of the bare-eye inspection, while the use of sodium hydroxide provided satisfactory condition on the tube surface, the use of potassium hydroxide series provided satisfactory condition on the tube surface only when the ultrasonic intensity was over 120 W. In the cleaning effect analysis using the gravimetric method, cleaning efficiency of sodium hydroxide series was as high as 97.6% ($60^{\circ}C$, 120 W), but since the tube surface condition was poor after the use of potassium hydroxide, the gravimetric method was not appropriate. In the analytical result of surface contaminants on the tube surface, C, O, Ca, and Zr were detected, and mainly C and O dominated the proportion of contaminants. It was also found that the degree of cleaning on the tube affected the componential ratio of C and O; if the degree of cleaning is high, or if cleaning is well-conducted, the proportion of C is decreased, and the proportion of O is increased. Based on these results, optimal cleaning for application in the industry can be expected by categorizing cleaning process into three steps of Alkali cleaning, Rinsing, and Drying and by adjusting cleaning parameters in each step.

Optimization of Cleaning Parameters in Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정의 세정인자 최적화)

  • Lee, Seong-Hoon;Seok, Jong-Won;Kim, Pil-Kee;Oh, Seung-Hee;Seok, Jong-Hyuk;Oh, Byung-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.109-115
    • /
    • 2008
  • The cleaning process of contaminant particles adhering to the microchips, integrated circuits (ICs) or the like is essential in modern microelectronics industry. In the cleaning process particularly working with the application of inert gases, the removal of contaminant particles of submicron scale is very difficult because the particles are prone to reside inside the boundary layer of the working fluid, The use of cryogenic $CO_2$ cleaning method is increasing rapidly as an alternative to solve this problem. In contrast to the merits of high efficiency of this process in the removal of minute particles compared to the others, even fundamental parametric studies for the optimal process design in this cleaning process are hardly done up to date, In this study, we attempted to measure the cleaning efficiency with the variations of some principal parameters such as mass flow rate, injection distance and angle, and tried to draw out optimal cleaning conditions by measuring and evaluating an effective cleaning width called $d_{50}$.

Development of watermark free drying process on hydrophobic wafer surface for single wafer process tool

  • Im, Jeong-Su;Choe, Seung-Ju;Seong, Bo-Ram-Chan;Gu, Gyo-Uk;Jo, Jung-Geun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.19-22
    • /
    • 2007
  • 반도체 산업은 회로의 고밀도화, 고집적화에 따라 웨이퍼 표면의 입자, 금속, 금속 이온, 유기물 등 오염물의 크기가 미세해 지고 세정에 대한 요구 조건이 더욱 엄격해지고 있다. 현재 세정 공정은 반도체 제조공정 전체에서 약 30%를 차지하고 있으며, 습식 세정 방식이 주로 사용되고 있다.[1] 습식 세정방식은 탈이온수로 린스하고 건조하는 공정이 필연적으로 따르며, 기판 표면에 건조과정에서 물반점이 남는 문제가 가장 큰 이슈로 남아 있다. 본 연구는 웨이퍼의 습식 세정 공정에 사용되는 DHF Final Clean Process후 IPA Vapor를 이용한 건조 방법을 기술 하였다. Single wafer spin process를 이용하였으며, 웨이퍼 Process 공간을 밀폐 후 N2가스를 충진하여 대기중의 산소 오염원 유입을 차단하고 수세 및 건조 가스를 이용하여 건조시킴으로써 SiFx의 SiOx로의 치환을 방지 하여 건조 효율 향상을 목적으로 한다. Bare 웨이퍼에서 65nm 이상 오염 발생 증가량을 측정 하였으며, 공정 후 웨이퍼 오염 발생량을 35개 이하로 확보 하였다.

  • PDF