• Title/Summary/Keyword: 세정조

Search Result 73, Processing Time 0.029 seconds

High Mobility Thin-Film Transistors using amorphous IGZO-SnO2 Stacked Channel Layers

  • Lee, Gi-Yong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.258-258
    • /
    • 2016
  • 최근 디스플레이 산업의 발전에 따라 고성능 디스플레이가 요구되며, 디스플레이의 백플레인 (backplane) TFT (thin film transistor) 구동속도를 증가시키기 위한 연구가 활발히 진행되고 있다. 트랜지스터의 구동속도를 증가시키기 위해 높은 이동도는 중요한 요소 중 하나이다. 그러나, 기존 백플레인 TFT에 주로 사용된 amorphous silicon (a-Si)은 대면적화가 용이하며 가격이 저렴하지만, 이동도가 낮다는 (< $1cm2/V{\cdot}s$) 단점이 있다. 따라서 전기적 특성이 우수한 산화물 반도체가 기존의 a-Si의 대체 물질로써 각광받고 있다. 산화물 반도체는 비정질 상태임에도 불구하고 a-Si에 비해 이동도 (> $10cm2/V{\cdot}s$)가 높고, 가시광 영역에서 투명하며 저온에서 공정이 가능하다는 장점이 있다. 하지만, 차세대 디스플레이 백플레인에서는 더 높은 이동도 (> $30cm2/V{\cdot}s$)를 가지는 TFT가 요구된다. 따라서, 본 연구에서는 차세대 디스플레이에서 요구되는 높은 이동도를 갖는 TFT를 제작하기 위하여, amorphous In-Ga-Zn-O (a-IGZO) 채널하부에 화학적으로 안정하고 전도성이 뛰어난 SnO2 채널을 얇게 형성하여 TFT를 제작하였다. 표준 RCA 세정을 통하여 p-type Si 기판을 세정한 후, 열산화 공정을 거쳐서 두께 100 nm의 SiO2 게이트 절연막을 형성하였다. 본 연구에서 제안된 적층된 채널을 형성하기 위하여 5 nm 두계의 SnO2 층을 RF 스퍼터를 이용하여 증착하였으며, 순차적으로 a-IGZO 층을 65 nm의 두께로 증착하였다. 그 후, 소스/드레인 영역은 e-beam evaporator를 이용하여 Ti와 Al을 각각 5 nm와 120 nm의 두께로 증착하였다. 후속 열처리는 퍼니스로 N2 분위기에서 $600^{\circ}C$의 온도로 30 분 동안 실시하였다. 제작된 소자에 대하여 TFT의 전달 및 출력 특성을 비교한 결과, SnO2 층을 형성한 TFT에서 더 뛰어난 전달 및 출력 특성을 나타내었으며 이동도는 $8.7cm2/V{\cdot}s$에서 $70cm2/V{\cdot}s$로 크게 향상되는 것을 확인하였다. 결과적으로, 채널층 하부에 SnO2 층을 형성하는 방법은 추후 높은 이동도를 요구하는 디스플레이 백플레인 TFT 제작에 적용이 가능할 것으로 기대된다.

  • PDF

Economic and Performance Analysis for 2bed and 3bed Oxygen PSA Process (2탑 및 3탑식 Oxygen PSA 장치 운전결과 및 경제성 비교분석)

  • Kim, Kweon-Ill;Kim, Jong-Nam;Cho, Sung-Chul;Cho, Soon-Haeng;Jin, Myung-Jong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.653-660
    • /
    • 1996
  • For oxygen PSA process development, adsorbed amount of oxygen and nitrogen on various adsorbents were measured corresponding Langmuir isotherm parameters were measured. A reasonable adsorbent for oxygen process was selected based on the effective adsorbed amount. The PSA process consists of adsorption, desorption, pressurization, purging and pressure equilization steps. Adsorption pressure was about 2 atm and desorption pressure was between 120 torr to 400torr. Cycle time of 2-bed PSA process was 80 seconds and that of 3-bed oxygen PSA process was 180 seconds. In order to compare and analyze operation characteristics and economic feasibilities of 2-bed and 3-bed oxygen PSA processes, productivity, oxygen concentration and recovery were compared and the effect of purge and pressurization steps on the performance of PSA processes were analyzed. For the commercial scale oxygen PSA process, capital and electricity cost were estimated. In the range of $O_2$ production less than $700Nm^3/hr$, the 2-bed process is conformed more feasible in economic view point.

  • PDF

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

The Effect of Pre-Treatment Methods for the Life Time of the Insoluble Electrodes (불용성 전극의 전처리 방법이 전극의 수명에 미치는 영향)

  • Park, Mi-Jung;Lee, Taek-Soon;Kang, Meea;Han, Chi-Bok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.291-298
    • /
    • 2016
  • Electrochemical water treatment process as a useful treatment method for the removal of non-degradable matter has been consistently studied for several decades. Key process of electrochemical water treatment are oxidation reaction from an anode and reduction from a cathode. In this study, the effect of pre-treatment methods in the insoluble electrode manufacturing process for the water treatment has been evaluated for the life time of electrode The results of this study showed that pre-treatment methods of a base metal such as surface roughness, clean method and interlayer formation influenced to life time of electrode when the same condition (catalyst electrode layer coating method and material system) was applied for pre-treatment methods. This study was conducted by using $IrO_2/Ti$ electrode In the test of sand-blasting process, an electrode manufactured by using sanding media of different sizes resulted in the most effective electrode life time when the size of alumina was used for $212{\sim}180{\mu}m$ praticle size (#80). The most effective method was considered using arc plasma in the additional roughness control and cleaning process, sputtering method to form Ta type interlayer formation process.

Operation of CROM System and its Effects of on the Removal of Seston in a Eutrophic Reservoir Using a Native Freshwater Bivalve (Anodonta woodiana) in Korea. (담수산 이매패 펄조개를 이용한 흐름형 유기물 제어(CROM) 운영 - 퇴적물의 영향)

  • Kim, Baik-Ho;Baik, Soon-Ki;Hwang, Su-Ok;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.161-171
    • /
    • 2009
  • A 'continuous removal of organic matters (CROM) system' using a native freshwater bivalve in Korea Anodonta woordiana, was developed to determine its potential of controlling various sestons in eutrophic lake system, and to evaluate its effect on water quality improvement under consideration of sediment addition as habitat. We designed CROM experiments with four treatments: no mussels and no sediment (W, negative control), no mussels and sediment (WS, positive control), mussels and no sediment (WM), and mussels and sediment (WMS). The experiments were performed at the condition of 18${\sim}$25 L $h^{-1}$ of inflow, mussel density of 486.1 indiv. $m^{-2}$, and temperatures between 15 and $22^{\circ}C$ for 13 consecutive days. Physicochemical and biological parameters were measured at daily (10:00 am) intervals after the mussel addition. Results indicated that mussel stockings without addition of sediment effectively removed sestons (suspended solids and chlorophyll-a) at nearly same level over 80 percentage of the control during the study, while there were no differences in removal activities of sestons between with and without sediment (P>0.5). Therefore, it clearly suggests that CROM system using A. woordiana has a strong potential to control the seston in surface water of eutrophic lake.

Partial Nitrification of Wastewater with Strong N for Anaerobic Nitrogen Removal (혐기성 질소제거를 위한 고농도 질소폐수의 부분질산화)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Effluent from an anaerobic digestion system with an elutriated phased treatment(ADEPT, Anaeorbic Digestion Elutriated Phase Treatment) for piggery waste treatment using anaerobic ammonium oxidation(ANAMMOX) process was used as a substrate of partial nitrification reactor. In mesophilic condition($35^{\circ}C$), controlling parameters of nitrite accumulation were HRT, pH, free ammonia(FA) and hydroxylamine rather than dissolved oxygen. Bicarbonate alkalinity consumption ratio including bicarbonate stripping and buffering was 8.78 g $Alk._{comsumed}/g\;NH_4-N_{converted}$. In steady state for 1 day of HRT and $2.7{\sim}4.4mg/L$ of DO, $NO_2-N/NH_4-N$ ratio of partial nitrification effluent was about $1{\sim}3$, which was applicable to ANAMMOX reactor influent for the combined partial nitrification-ANAMMOX process.

Solid-Liquid Separation Characteristics with Bio-filter Media Reactor (여과분리형 생물반응조의 고액분리 특성)

  • Park, Young Bae;Jung, Yong Jun
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.347-353
    • /
    • 2014
  • This work was performed to find the effect of operation parameters on the permeate flux through the activated sludge dynamic layer, and to indicate the relationship between the water quality of supernatant and flux based on the results. Since the effluent can be obtained through steady and stable formation of cake layer in the bio-filter media system, it is an important subject to keep and control microbes with activated state in the bio-reactor. Filtration resistance was drastically increased at more than 18000mg/L of MLSS. With filtration time continued, the flux was gradually decreased and the water qualities of supernatant monitored by turbidity and TOC were also deteriorated. This phenomenon indicated that the organic materials generated by microbes and accumulated in the reactor might affect the flux in the system. In addition, the decrease of flux was simultaneously observed in the sludge volume index. When SVI was controlled from 150 to 250, the flux was also decreased. The proper aeration time was recommended to 30 to 60 seconds in this system. In order to operate this system steadily, therefore, the control of water quality of supernatant and SVI should be proceeded.

An Experimental Study on Energy Reduction of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지절감에 관한 실험적 연구)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Kang, Shin-Young;Son, Seung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.273-281
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, the energy consumption of outdoor air conditioning systems represents about 45% of the total air conditioning load required to maintain a clean room environment. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery from the exhaust air is therefore useful for reducing the outdoor air conditioning load for a clean room. In the present work, an energy-efficient outdoor air conditioning system was proposed to reduce the outdoor air conditioning load by utilizing an air washer to recover heat from the exhaust air. The proposed outdoor air conditioning system consisted mainly of a preheating coil, an air washer, two stage cooling coils, a reheating coil, a humidifier and two heat recovery cooling coils inserted into the air washer and connected to a wet scrubber. It was shown from the lab-scale experiment with outdoor air flow of $1,000\;m^3/h$ that the proposed system was more energy-efficient for the summer and winter operations than an outdoor air conditioning system with a simple air washer.

Introduction of Wastewater Reuse Project in Jeju Island (제주 하수처리장 재이용사업 소개(판포))

  • Lee, Kwang-Ya;Kim, Hae-Do;Joo, Jin-Hun;Kim, Young-Jin;Kang, Su-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.469-469
    • /
    • 2012
  • 제주 지역은 대부분 지하수를 이용하고 있으며, 제주 서부지역의 경우, 지하수의 과다한 취수로 인해 지하수 하강은 물론 해수침투현상도 나타나고 있다.(제주미디어 2009.10) 제주지역의 지하수 적정 개발량은 약 97%에 이르고 있어 국지적으로는 지하수 개발이 한계에 이른 것으로 평가된다. 따라서, 농촌용수 공급을 위한 사업이 필요하며, 농업 환경 피해를 최소화할 수 있는 방안이 필요하다. 또한 농촌지역의 도시화에 따라 하수처리장의 농촌지역에도 늘어가고 있으며 이제는 농촌지역과 도시지역이 구분되지 않고 혼합되어 있는 형태로 발전하고 있기 때문에 과거의 농업활동도 변화되고 있으며, 하천에서 취수하는 용수중에서 농업용수로의 사용이 부적합한 용수가 취수되고 있다. 따라서 하수처리수의 농업용수 재이용시스템과 같이 수처리를 이용한 농업용수의 공급방안이 확대될 것으로 판단된다. 한국농어촌공사 농어촌연구원에서는 (주)필로스, (주)블루인바이로먼트엔텍과 함께 글로벌탑 환경기술개발사업의 과제를 수행하고 있으며, 본 연구를 통하여, 고내구성 고기능성의 복합막 기능이 부여된 UF/NF 분리막 소재 및 모듈을 개발하고 전기분해/오존조합에 의한 에너지 절약형 재이용수 공정기술을 개발하여, 판포하수처리장을 Test-bed로 선정하여 개발 기술을 적용하고자 한다. 제주도 한경면 판포리에 위치한 판포하수처리장은 하수재이용 사업을 통해 수처리 및 용수 공급 관로가 설치되어 있으며, 개발한 재이용수를 현지에서 공급 활용할 수 있어, 연구개발에 국한되지 않고 실증 플랜트에서 용수 사용자까지 연결이 가능하여 최적의 입지 연건을 가지고 있다. 개발될 시스템은, 유입조, ECR 반응조, AOPs, 나노버블을 이용한 막세정 시스템, UF/NF 시스템으로 공정이 설계되며, 제염처리는 물론 제주지역의 농업용수로써 안정적인 용수를 확보할 수 있는 시스템을 구축하고 있다. 본 연구개발을 통한 최종 목표는 하수처리장의 방류수 고도처리를 통해 도시, 농촌지역에 필요한 고품질 맞춤형 재이용수로 공급하고, 국내 외 하수 재이용시장으로 진출하는데 있다.

  • PDF

The Estimating an Effect of Rapid Flux Increase to a Membrane in the Intermittent Aeration MBR Process Using Alum Treatment (응집제를 활용한 간헐포기 MBR공정에서 순간플럭스 증가가 분리막에 미치는 영향 평가)

  • Choi Song-Hyu;Cho Nam-un;Han Myong Su
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2005
  • By supplying air intermittently in various mode, the effects of oxic/anoxic time ratio and air scrubbing in aeration condition on the membrane flux and permeability were investigated. When suction pump stops, vacuum pressure remains inside the suction pump. Therefore, the effect of remaining vacuum pressure in the suction pump on fouling of membrane was investigated. The effect of EPS (Extra cellular Polymeric Substance) which is generated due to the long SRT and high concentration of MLSS and the dose of coagulant on the membrane were also investigated. The suitable oxic/anoxic time ratio for the best removal efficiency of organic matter and nitrogenous matter was 40 minutes (Oxic) : 20 minutes (Anoxic). At this time ratio, alum was dosed into the aeration tank. The result of dosing alum was that the concentration of alum solution might affect nitrification and denitrification. To remove 1 mg/L of phosphorus in MBR process, it needs 0.75 mg/L of alum solution.