• Title/Summary/Keyword: 세슘포텐셜

Search Result 1, Processing Time 0.013 seconds

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel (사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가)

  • Jeon, Sang-Chae;Kim, Keon Sik;Kim, Dong-Joo;Kim, Dong Seok;Kim, Jong Hun;Yoon, Jihae;Yang, Jae Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.