Sodium dodecyl sulfate, which was anionic surfactant, at a concentration higher than its critical micellar concentration was added to calcium solution for forming micelles. Then aggregates were formed by adsorption or binding of calcium ions on the surface of micelles, and gathering between them, and then rejected by two kinds of ceramic membranes to remove calcium ions. As result, rejection rates of calcium were higher than 99.98%. And in our experimental range the higher TMP trended to increase the resistance of membrane fouling ($R_f$), total permeate volume ($V_T$), dimensionless permeate flux ($J/J_o$) and permeate flux (J) because TMP was driving force. And we investigated effects of $N_2$-back-flushing time and filtration time, that was back-flushing period, during periodic $N_2$-back-flushing on ceramic membranes. As result, optimal BTs for NCMT-623l ($0.07{\mu}m$ pore size) and NCMT-7231 membrane ($0.10{\mu}m$) were 10 sec and 15 sec, respectively. Also, optimal FT was 5 min for both membranes, and the frequent $N_2$-back-flushing could decrease membrane fouling effectively. Then, the optimal conditions resulting from our experiments for synthetic calcium solution were applied to groundwater using as washing process of soymilk package. As result, rejection rates of calcium were higher than 99.98%.
This study was performed to discover the optimum operation conditions for the advanced water treatment using the ceramic membrane, introduced the first in the nation at the Y water treatment plant (WTP). The result of investigation to find the optimum operation conditions which can continue preserving the filtration performance as well as satisfying both the economics and the water quality is as follows. In the ordinary water quality condition of the Y WTP, the optimum filtration time(the backwash period), which can minimize the production of backwash waste and preserve the membrane performance was examined to be 4.0 hours on basis of institution capacity ($16,000m^3/day$). Examining the recovery rate of TMP from the chemical cleaning (CIP) discovered that the inorganic contaminants, which cause membrane fouling, such as iron, manganese, aluminum, were removed through the acidic cleaning using citric acid, whereas the membrane recovery rate was found to be low. But, on the other hand, the TMP was recovered to the initial value from the alkali cleaning using the NaOCl. Therefore, the main contaminant causing the fouling was determined to be hydrophilic organic compound( biopolymer). The membrane recovery rate is highly influenced by the temperature of the cleaning chemical. That is, the rate increased with increasing temperature.
This study was carried out to find the optimum chemical cleaning (CIP) conditions for ceramic microfiltration membrane process of Y drinking water treatment plant. B train consists of coagulation as pretreatment process with membrane was chemically cleaned 9 times more than that of A train with ozonation and coagulation. The frequent CIP of B train was due to improper CIP method suggested by membrane manufacture as well as different membrane fouling between A and B train resulting from the different pretreatment processes. That is, recovery rate of CIP was overestimated because the rate was calculated based on normalized trans membrane pressure (TMP) rather than normalized permeability. And also, iron oxide fouling was ineffectively removed by citric acid. By using a mixture of 1% citric acid and 0.1 N sulfuric acid as reagent for acid CIP step, the recovery rate of CIP was the highest while CIP efficiency by 0.1 N sulfuric acid was the lowest. When sulfuric acid concentration increased from 0.1 N to 0.3 N in mixture, total recovery rate of CIP was not increased due to the decreased CIP efficiency in alkali CIP step by 0.3% NaOCl although its rate in acid CIP step was increased. It was proved through the experiment result of CIP sequence changes that an acid followed by alkali CIP was more effective than that of the reverse method.
The ceramic microfiltration system with periodic $N_2$-back-flushing was operated for treating paper wastewater discharged from a company making toilet papers by recycling milk or juice cartons. Two kinds of alumina membranes with 7 channels used here for recycling paper wastewater. The optimal filtration time interval for HC04 membrane with $0.4{\mu}m$ pore size was lower value of 4 min than 16 min for HC10 with $1.0{\mu}m$ pore size at fixed back-flushing time 40 sec, trans-membrane pressure $1.0kg_f/cm^2$ and back-flushing pressure $5.0kg_f/cm^2$. From the results of TMP effect at fixed filtration time interval and back-flushing time, the lower TMP was better on membrane fouling because high TMP could make easily membrane cake and fouling inside membrane structure. However, we could acquire the highest volume of total permeate at the highest TMP for the reason that TMP was driving force in our filtration system to treat paper wastewater. Then the permeate water of low turbidity was acquired in our microfiltration system using multi channels ceramic membranes, and the treated water could be reused in paper process.
In this study the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes with periodic water-back-flushing. We could investigate effects of watch-back-flushing period, transmembrane pressure (TMP) and flow rate, and find optimal operating conditions. The back-f1ushing time (BT) was fixed at 3 sec, and fi1tration times (FT) werc changed in 15~60 scc, TMP in 1.00~2.50$kg_{f}$/$cm^2$, and the flow rates in 0.27~1.75 L/min. The optimal conditions were discussed in 7he viewpoints of dimensionless permeate flux (J/J$_{0}$), total permeate volume ($V^T$) and resistance of membrane fouling ($R^f$). Optima1 back-flushing period was BT/FT=0.20, suggesting that the frequent back-flushing should decrease membrane fouling. Optimal TMP in the viewpoint of $V^T$ was 1.00~1.55$kg_{f}$/$cm^2$, suggesting that rising TMP should increase membrane fouling and decrease permeate flux. But, rising f1ow rate should decrease membrane fouling and increase permeate flux. Then, average rejection rates of pollutants filtratedby carbon ceramic membranes were 88~98 % for turbidity, 48~72% fort $COD_{cr}$ and 37~76% for TDS.
Kim, Eun Ju;Park, Se Hyoung;Park, Jung Hoon;Baek, Il Hyun
Membrane Journal
/
v.25
no.5
/
pp.415-421
/
2015
$SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.
Sojin Min;Ahrumi Park;Yongsung Kwon;Daehun Kim;You-In Park;Seong-Joong Kim;Seung-Eun Nam
Membrane Journal
/
v.33
no.6
/
pp.439-446
/
2023
Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.
This study was carried out to find the optimum coagulation conditions for ceramic microfiltration process of Y water treatment plant. When pH of raw water from Y Dam was adjusted to 7, the efficiency of coagulation was the best and the optimun dosage of coagulant was 3 mg/L(as $Al_2O_3$) for turbidity of raw water less then 10 NTU in Jar test. In mini module test, the decay rate of specific flux was the lowest when PAC (poly Aluminum Chloride) was used among coagulants and pH was adjusted to 7. The decay rate of specific flux for raw water turbidity of 10~30 NTU was greatly decreased with increase of dosage of coagulant (PAC) while the rate was not significantly decreased for turbidity more than 50 NTU. In conclusion, the optimum dosage of PAC (11% as $Al_2O_3$) was 30 and 50 mg/L for raw water turbidity of less than 10 NTU and more than 50 NTU, respectively. The dosage of PAC should be increased linearly 30 to 50 mg/L depending on raw water turbidity of 10 to 50 NTU.
The effect of water back-flushing period (FT) and water back-flushing time (BT) was compared with the previous study of nitrogen back-flushing in viewpoints of resistance of membrane fouling ($R_f$), permeate flux (J), and total permeate volume ($V_T$) in hybrid process of tubular ceramic microfiltration and PES (polyethersulfone) beads loaded $TiO_2$ photocatalyst for advanced drinking water treatment. As FT decreasing, Rf decreased, but J and $V_T$ increased. Turdity treatment efficiency was the maximum at NBF (no back-flushing) and increased a little as FT decreasing in both water and nitrogen back-flushing. Organic matter treatment efficiency was the maximum at FT 4 min in water back-flushing, but increased as FT decreasing in nitrogen back-flushing. As BT increasing, Rf and resistance of reversible membrane fouling ($R_{rf}$) decreased, but J and $V_T$ increased. The turdity treatment efficiency was almost constant beyond 98% in water back-flushing, but increased as BT increasing except NBF in nitrogen. The organic matter treatment efficiency was the maximum at BT 6 sec in water back-flushing, but increased as BT increasing except NBF in nitrogen. The $V_T$ was the maximum at BT 30 and FT 2 min, and optimal condition was BT 30 sec per FT 2 min in this experimental range.
Kim, Yeo-Jin;Kim, Seong-Joong;Kim, Jeong;Jo, Yeong-Hoon;Park, Hosik;Lee, Pyung-Soo;Park, You-In;Park, Ho-Bum;Nam, Seung-Eun
Membrane Journal
/
v.27
no.3
/
pp.263-272
/
2017
There are several different methods to characterize membrane pore size distribution, however, it is yet difficult to accurately measure pore size range of 10-50 nm. In this work, we employed gas-liquid displacement porometer (GLDP) and liquid-liquid displacement porometer (LLDP) to characterize in-house alumina hollow fiber membrane (K-100) and commercial membranes (A-100, A-20) that exhibit pore sizes between 10-100 nm. GLDP method was more suitable for measuring the maximum pore size, and the measured mean pore size of the membranes by LLDP were better correlated with water permeability and solute rejection. It was determined that LLDP is effective for measuring pore sizes between 10-50 nm; however, the method holds intrinsic disadvantages such as low precision and high sensitivity compared to that of GLDP. Nevertheless, it is expected that the recently commercialized LLDP technique can provide useful data that other methods cannot.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.