• Title/Summary/Keyword: 세균 부착

Search Result 180, Processing Time 0.026 seconds

Biological Hazard Analysis of Leaf Vegetables and Fruits According to Types of Cultivation and Distribution Systems (엽채류 및 과채류의 재배유형 및 유통경로별 생물학적 위해요소 조사)

  • Yu, Yong-Man;Youn, Young-Nam;Choi, In-Uk;Yuan, Xianglong;Lee, Young-Ha
    • Food Science and Preservation
    • /
    • v.14 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • As the consumption of environmentally friendly agricultural products increases, food safety is at the forefront of public health concerns. We analyzed the biological hazards of 26 species of leaf vegetables and 4 species of fruit according to types of cultivation (conventional or organic filming) and distribution system (giant retailers or organic food stores) using various culture media, automatic bacterial identification systems, and microscopy, Total bacterial count of unwashed agricultural product ranged from $5.2{\times}10^{3}\;to\;1.5{\times}10^{5}\;CFU/mL$ (from 0.1 g of agricultural products), and the average count dropped 25-fold (range, 8-60-fold) after water washing. Microbial levels of washed organic agricultural products were $6.0{\times}10^{2}-1.9{\times}10^{4}\;CFU/mL$, and were not significantly different f개m the microbial loads on conventionally farmed produce. There was no significant difference in bacterial count from agricultural produce purchased from giant retailers or organic food stores. Total microbial count of Chinese cabbage, welsh onion, red chicory and kale were comparatively high, and Enterobacter cloacae was isolated most frequently. Parasites were detected in agricultural products purchased from conventional farm products in the stores of giant retailers, and in organic food stores, and parasite prevalence was especially high in Chinese cabbages and welsh onion. The study indicated that cultivation methods and distribution systems did not cause significant differences in biological contamination levels of agricultural produce. Some vegetables and fruits were highly contaminated effective sanitizing methods to reduce these biological hazards are needed.

Direct detection of cariogenic streptococci in metal brackets in vivo using polymerase chain reaction (교정용 메탈 브라켓에서 자가중합효소연쇄반응을 통한 치아우식증 원인균의 탈출)

  • Ahn, Sug-Joon;Lee, Shin-Jae;Baek, Seung-Hak;Kim, Tae-Woo;Chang, Young-Il;Nam, Dong-Seok;Lim, Bum-Soon
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.312-319
    • /
    • 2005
  • Streptococcus mutans and Streptococcus sobrinus are major etiological agents in enamel demineralization around orthodontic appliances. This study was designed to examine the prevalence of these streptococci on orthodontic brackets in vivo using polymerase chain reaction. Four incisor brackets in the upper and lower arches were removed and collected from 80 patients at the time of debonding. The genomic DMA of adhered bacteria was extracted and each dextranase gene of S. mutans and S. sobrinus was amplified using the specific oligonucleotide primers. The results showed that the maxillary incisor brackets were colonized by both cariogenic streptococci to a somewhat higher degree than that taken from the mandible. The prevalence of S. mutans was $50.0\%$ on the maxillary incisor brackets and $33.8\%$ on the mandibular incisor brackets, and that of S. sobrinus was $17.5\%$ and $15.0\%$, respectively. Both species were detected on the maxillary incisor brackets of 7 patients $(8.8\%)$ and the mandibular incisor brackets of 5 patients $(6.3\%)$. These results suggest that cariogenic streptococci can adhere to the incisor brackets and may be resident species on the incisor brackets.

Bacterial Quorum Sensing and Quorum Quenching for the Inhibition of Biofilm Formation (박테리아의 Quorum Sensing 및 생물막 형성 억제를 위한 Quorum Quenching 연구 동향)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • Quorum sensing (QS) is a cell-to-cell communication system, which is used by many bacteria to regulate diverse gene expression in response to changes in population density. Bacteria recognize the differences in cell density by sensing the concentration of signal molecules such as N-acyl-homoserine lactones (AHL) and autoinducer-2 (AI-2). In particular, QS plays a key role in biofilm formation, which is a specific bacterial group behavior. Biofilms are dense aggregates of packed microbial communities that grow on surfaces, and are embedded in a self-produced matrix of extracellular polymeric substances (EPS). QS regulates biofilm dispersal as well as the production of EPS. In some bacteria, biofilm formations are regulated by c-di-GMP-mediated signaling as well as QS, thus the two signaling systems are mutually connected. Biofilms are one of the major virulence factors in pathogenic bacteria. In addition, they cause numerous problems in industrial fields, such as the biofouling of pipes, tanks and membrane bioreactors (MBR). Therefore, the interference of QS, referred to as quorum quenching (QQ) has received a great deal of attention. To inhibit biofilm formation, several strategies to disrupt bacterial QS have been reported, and many enzymes which can degrade or modify the signal molecule AHL have been studied. QQ enzymes, such as AHL-lactonase, AHL-acylase, and oxidoreductases may offer great potential for the effective control of biofilm formation and membrane biofouling in the future. This review describes the process of bacterial QS, biofilm formation, and the close relationship between them. Finally, QQ enzymes and their applications for the reduction of biofouling are also discussed.

Quorum Quenching Enzymes and Biofouling Control (정족수 제어효소와 biofouling 제어)

  • Jeon, Young Jae;Jeong, Won-Geom;Heo, Hye-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1487-1497
    • /
    • 2016
  • Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible signaling molecules (auto-inducers) govern the expression of various genes dependent on their population density manner. As a consequence of synthesis and response to the signaling molecules, individual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence and antibiotic production. Many studies indicated that biofilm formations are associated with QS signaling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environments anywhere water is present called biofouling, which results in serious eco-technological problems. Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been discovered from various microorganisms, and their functions and mechanisms associated with QS have also been elucidated. To resolve biofouling problems related to various industries, the novel approach based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and environmental toxicities, which may provide potential advantages over the conventional anti-biofouling approaches. Therefore this paper presents recent information related to bacterial quorum sensing system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-biofouling approaches using the quorum quenching.

New Approaches to the Control of Pathogenic Oral Bacteria (바이오필름을 생성하는 병원성 구강 세균을 제어하는 새로운 접근법)

  • Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • In the oral cavity, there are hundreds of microbial species that exist as planktonic cells or are incorporated into biofilms. The accumulation and proliferation of pathogenic bacteria in the oral biofilm can lead to caries and periodontitis, which are typical oral diseases. The oral bacteria in the biofilm not only can resist environmental stress inside the oral cavity, but also have a 1,000 times higher resistance to antibiotics than planktonic cells by genes exchange through the interaction between cells in the oral biofilm. Therefore, if the formation of oral biofilm is suppressed or removed, oral diseases caused by bacterial infection can be more effectively prevented or treated. In particular, since oral biofilms have the characteristic of forming a biofilm by gathering several bacteria, quorum sensing, a signaling system between cells, can be a target for controlling the oral biofilm. In addition, a method of inhibiting biofilm formation by using arginine, an alkali-producing substrate of oral bacteria, is used to convert the distribution of oral microorganisms into an environment similar to that of healthy teeth or inhibit the secretion of glucosyltransferase by S. mutans to inhibit the formation of non-soluble glucans. It can be a target to control oral biofilm. This method of inhibiting or removing the oral biofilm formation rather than inducing the death of pathogenic bacteria in the oral cavity will be a new strategy that can selectively prevent or therapeutic avenues for oral diseases including dental caries.

Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study (지르코니아 표면에 부착된 바이오필름에 대한 LED 치솔의 항균효과)

  • Park, Jong Hew;Kim, Yong-Gun;Um, Heung-Sik;Lee, Si Young;Lee, Jae-Kwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.160-169
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. Materials and Methods: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. Results: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. Conclusion: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.

국내 박물관 보존환경에서의 미생물 분포 실태조사

  • Yun, Su-Jeong;Lee, Na-Eun;Kim, Mun-Ok;Cha, Mi-Seon;Lee, Jae-Dong;Gwon, Yeong-Suk;Lee, Sang-Jun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.05a
    • /
    • pp.245-246
    • /
    • 2005
  • Acinetobacter sp.가 외부환경보다 많이 발견되었다는 것으로 보아 이 균이 섬유류 유물의 훼손에 영향을 많이 미칠 것으로 보인다 Co교nebacterium sp., Bacillus sp.등은 외부환경이나 전시실 등에서 전혀 발견되지 않았으나 유물보관함에서 발견되었다. 때문에 이 세균들은 외부환경으로부터 유입된 균이 아니라고 추정되며, 이 균들이 섬유류 유물에 어떠한 영향을 미치는지 연구해 볼 필요성이 있다. 섬유의 부착세균으로는 공중 부유에서 대다수로 검출되었던 Acinetobacter spp., Pseudomonas spp., Neisseria spp.,등으로 공기를 통해 섬유류 유물이 오염된다는 것을 확인할 수 있었다.

  • PDF

Isolation of Dispersed Mutants from Wild Myxobacteria. (분산 돌연변이 점액세균의 분리)

  • 이봉수;이차율;조경연
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.342-347
    • /
    • 2003
  • Clumping of cells is one of the major obstacles to culture wild myxobacterial strains in liquid media. In an effort to solve this problem, we tried a method isolating spontaneous mutants that grow dispersed in liquid media from a wild myxobacterial strain. Myxococcus stipitatus KYC1001, a newly isolated strain from Gyearyongsan National Park in Korea, clumps and sticks to the surface of culture vessels as other wild myxobacteria behave in liquid media. Taking an advantage of the characteristics that dispersed mutant cells would grow dispersed while most other wild type cells would clump and stick to the surface of culture vessels, spontaneous dispersed mutants were enriched by repeated subculturing of culture supernatant. A resultant mutant, KYC2001, did not form any clumps nor stick to the surface of culture flasks, but grew completely dispersed in liquid. Meanwhile, three other spontaneous mutants, KYC2002, KYC2003, and KYC2004, shelved partially dispersed phenotype. A major portion of the cells grew dispersed in liquid but they still formed some clumps.

EFFECTS OF SUBINHIBITORY CONCENTRATIONS OF ANTIMICROBIAL AGENTS ON CELL SURFACE PROPERTIES AND VIRULENCE FACTORS OF MUTANS STREPTOCOCCI (아저해농도(亞沮害濃度)의 항균물질이 mutans streptococci의 세포표면성질과 독력인자에 미치는 영향)

  • Kim, Young-Jae;Hahn, Se-Hyun;Lee, Sang-Hoon;Jang, Ki-Taeg;Kim, Chol-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.605-616
    • /
    • 2004
  • Subinhibitory concentrations (sub-MICs) refer to concentrations below minimum inhibitory concentrations (MICs). The antimicrobial agents may be present at relatively high concentration, at least higher than bacterial MIC and thereafter be deserted off a surface and function at sub-MICs, perhaps by interfering with bacterial metabolism. Consequently, the aim of this study was to determine the effects of growth, in the presence of sub-MICs of antimicrobial agents, on the cell surface properties and virulence factors of mutans streptococci and to investigate the efficacy of a chemical approach in vitro. Streptococcus mutans Ingbritt and Streptococcus sobrinus 6715-7 were used. Eight antimicrobial agents (Sanguinaria extract;SG, Chlorhexidine digluconate;CHX, Fluoride;F, Propolis;PP, Hydrogen peroxide;HP, Triclosan;TC, Sodium dodecyl sulfate;SDS Cetylpyridinium chloride; CC) were diluted serially in broth to determine MICs and to compare the growth rate, acid production, hydrophobicity, adhesion activity to saliva coated hydroxyapatite, glucan synthesis and cellular aggregation of experiment groups (in the presence of sub-MICs) with those of control (in the absence of antimicrobial agents). Sub-MICs of antimicrobial agents affected the growth of cells, hydrophobicity, and adhesion of bacteria to saliva coated hydroxyapatite and glucan synthesis. They also resulted in a significant reduction in pH after 12 hours (p<0.05). By cells pretreated with proteinase K, either the aggregation induced by antimicrobial agents was completely inhibited or the aggregation titers were markedly increased. According to the results of the present study, each antimicrobial agent at sub-MICs could affect similar as its known action mechanism and could continually inhibit cariogenic bacteria at such concentrations. Thus, the use of these antimicrobial agents would be one of the effective methods to prevent dental caries.

  • PDF

Antifouling Activity of Giffinisterone B and Oleamide Isolated from a Filamentous Bacterium Leucothrix mucor Culture against Ulva pertusa (부착성 사상세균 Leucothrix mucor 배양액에서 분리된 Giffinisterone B와 Oleamide의 해조류 Ulva pertusa 부착방지 효과)

  • Cho, Ji-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.1
    • /
    • pp.30-34
    • /
    • 2012
  • The filamentous bacterium Leucothrix mucor, an epiphyte of seaweed, showed antifouling activity against Ulva pertusa spore settlement and germling development. The chemical constituents representing the antifouling activity were identified as giffinisterone B and oleamide based on nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy (MS). Approximately 3.6 mg of giffinisterone B and 2.8 mg of oleamide were isolated from 1.6 g of Leucothrix mucor crude extract. Giffinisterone B fully inhibited spore settlement and germling development at $100{\mu}g/mL$. Oleamide inhibited spore settlement at $10{\mu}g/mL$ and germling development at $100{\mu}g/mL$.