• Title/Summary/Keyword: 성형 공정

Search Result 1,816, Processing Time 0.026 seconds

Enhancement of Dimple Formability in Sheet Metals by 2-Step Forming (2중 성형에 의한 금속판재 딤플의 성형성 향상)

  • Kim, Hasung;Kim, Minsoo;Lee, Hyungyil;Kim, Naksoo;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.841-849
    • /
    • 2013
  • In this study, a 2-step stamping model with an additional 1st stamping tool is proposed to reduce stamping flaws in the curved parts of a dimple in a nuclear fuel spacer grid. First, the strains of curved part of dimple are characterized via a comparison with strain solutions in pure bending. A reference 2D finite element (FE) model of 1-step stamping is then established, and the corresponding maximum strain is obtained. By varying the values of design variables of the 1st stamping tool in the 2-step stamping model, FE solutions are obtained to express the strain as a function of process variables, which provides the optimum values of process variables. Finally, applying these optimum values to a 3D FE model, we demonstrate the enhanced formability of the proposed 2-step stamping model.

A Study on Practical Tool Education for Improving Injection Molding Quality (사출성형품질 개선을 위한 실무금형교육에 관한 연구)

  • Shin, Ju-kyung
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • In injection molding process, the appearance quality issue occurs in most injection molded article. One of thermal designs for the mold was performed by increasing the cavity wall temperature with being as uniform as possible in any position. On the basis of the practical evaluation, the cavity wall temperature and finishing machined cavity surface under the optimum processing conditions are the most significant factors to avoid the appearance issue on the plastic part for a good cosmetic quality. Also, the wrong choice of gate type and location can have a considerable effect on the quality of a molded part and it's so important to keep the correct runner balance from each cavity. We've proposed the education training model of the practical tool technology course for the field oriented education to improve practical tool technology ability and optimized tooling design for injection molding quality which can be performed at the workplace substantially.

A Study on the Fabrication of Porous Sintered Materials for Glass Mold (유리 금형용 다공질 소결재의 제조에 관한 연구)

  • Jang Tae-Suk;Lim Tae-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.468-472
    • /
    • 2005
  • In order to prevent adhering of molten glass on a mold wall, the wall is swabbed with lubricant oil before forming. However, the swabbing process can be removed from the entire processes of the glass forming if the mold wall is made of a porous sintered material. The purpose of the present study is to manufacture a sintered material(having a sintered density of $85{\~}90\%$)which is the most appropriate into. plane material for a glass mold. For the research, SUS310L-based coarse powder (${\~}150{\mu}m$) and SUS420J2-based fine powder ($40{\~}50{\mu}m$) were used for the compact materials, and effects of compaction pressure and sintering condition(atmosphere, temperature) were investigated. The results obtained were as fellows. (1) By means of solid phase sintering, a desired sintering density could not be achieved in any case when using a 310L-based powder having a large particle size. (2) When sintering green compacts(compaction pressure of $2ton/cm^2$) in a commercial vacuum furnace(at $1300^{\circ}C$ for 2 hours), the sintered compacts had densities of $6.2g/cm^3(79\%)$ for 310L + 0.03$\%$B, $6.6g/cm^3 (86\%)$ for 420J2, $7.3g/cm^3(95\%)$ for 420J2+(0.03)$\%$B, and $7.6g/cm^3(99\%)$ for 420j2+(0.06)$\%$B, respectively. As a result, it is regarded that sintered compacts having a desired porosity may be achieved by vacuum sintering the 420J2-based powder (low pressure compaction) and the 310L+0.03$\%$B-based powder (high pressure compaction).

  • PDF

Effects of Psyllium Husk Content on the Physical Properties of Extruded Rice Flour (차전자피 함량에 따른 쌀 압출성형물의 물리적 특성)

  • Lee, Jung Won;Ryu, Gi Hyung
    • Food Engineering Progress
    • /
    • v.23 no.4
    • /
    • pp.283-289
    • /
    • 2019
  • This study was performed to determine the effect of psyllium husk addition on the physical properties of rice extrudates. Rice-based formulations mixed with psyllium husk (0, 7, 14 and 21%) were extruded at a die temperature of 140℃, screw speed of 200 rpm, and moisture content of 20%. As the content of psyllium husk increased, expansion ratio decreased, while piece density and specific length increased. Apparent elastic modulus, breaking strength, adhesiveness, and hardness augmented with an elevation in psyllium husk content. Lightness declined as psyllium husk content furthered, while redness, yellowness, and color difference intensified. Water soluble index and water absorption index increased with an increased amount of psyllium husk. In conclusion, the addition of psyllium affected the expansion of extruded rice snack possessing hard texture, small cells, and sticky texture due to higher water absorption during hydration.

Optimization of Multi-component Injection Molding Process Based on Core-back System (코어백 방식을 이용한 동시사출 성형 공정 최적화 연구)

  • Choi, Dong-Jo;Park, Hong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Injection molding have been used for manufacturing various fields of automotive interior trims for years. The demands on the injection molding technique are grown with the further development of the automobile technique and the design presentations for cost reduction and environment-friendly. This paper shows that multi-component injection conditions are different from general injection, also shows how to optimize part design and mold design and how to manufacturing through the efficient use of multi-component injection in development process using core back system. To fulfill this purpose, all influential process parameters related to the quality of automobile parts were analyzed in terms of the correlation between them. Base on that, a innovative process will be developed by injection engineers to implement it in practice.

Finite Element Analysis of Thermally-Induced Deformation in SMC Compression Molding (SMC 압축성형공정에서의 열변형에 관한 유한요소해석)

  • Lee, Jae-Hyoung;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.154-163
    • /
    • 1997
  • Thermally-induced deformation in SMC(Sheet Molding Compound) products is analyzed using three dimensional finite element method. Planar fiber orientation, which causes the anisotropic material properties, is calculated through the flow analysis during the compression stage of the mold. Also curing process is analyzed to predict temperature profile which has significant effects on warpage of SMC products. Through the developed procedure, effects of various process conditions such as charge location, mold temperature, fiber contents, and fiber orientations on deformation of final products are studied. and processing strategies are proposed to reduce the warpage and the shrinkage.

Optimization of Superplastic Forming Process (초소성 성형공정 최적화)

  • Lee, Jeong-Min;Hong, Seong-Seok;Kim, Yong-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.207-214
    • /
    • 1998
  • Influence of final thickness distribution in superplastic forming processes on mechanical properties of the product becomes very crucial. We should improve the thickness distribution of products by combining process parameters adequately In this paper we adopt a non-linear optimization technique for optimal process design of superplastic forming. And optimum design variable which makes the most adequate thickness distribution in combined stretc/blow forming and blow forming is predicted by this optimization scheme and rigid-viscoplastic finite element method.

  • PDF

Plane-Strain Analysis of the Stamping Process of Auto-Body Panel (차체판넬 프레스 성형공정의 평면변형해석)

  • 전기찬;이항수;유동진;이정우;김충환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1853-1860
    • /
    • 1992
  • The plane-strain stamping process is analyzed by a forming energy minimization method in order to obtain forming load, slip length and strain distribution in each step of punch stroke. All the developed programs are integrated into total CAD/CAE SYSTEM for the purpose of the practical usage in die design. The computed strain distribution and the amount of draw-in are compared with those of the actually developed panel It is found that there is a good agreement between theoretical and experimental results.

Process Design of Cold Forged Hub by Flow Control Forming Technique (유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계)

  • Park, Jong-Nam;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

평형 해법을 이용한 박판 성형의 단면 해석

  • 윤정환;유동진;양동열;이장희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.16-20
    • /
    • 2001
  • 종래에 자동차 차체의 프레스 성형 공정은 설계자의 정성적인 계산이나 다이 (Trial Dic)에 의해 시행 착오 끝에 설계되었다. 그런데, 부정확하게 계산되는 경우가 많아, 아이가 준비된 후 단점이 노출되어 여러 차례 수정 과정을 겪게 되어 시간과 경비를 증대시키는 원인이 되었다. 자동차 회사에서는 이 때문에 금형 설계 단계에서 빠르고 정확하게 금형의 불량을 예측하고 성형성을 정량적으로 평가하기 위한 시스템을 필요로 한다. 그중 비선형 유한요소법(F.E.M)에 의한 시뮬레이션은 정확한 해와 많은 정보를 줄 수 있다는 장점을 가지고 있다. 그러나, 3차원적인 대단히 복잡하고도 치수가 큰 자동차 판넬에 있어서는 수렴성 등의 문제로 적절한 시간 안에 충분한 정밀도를 갖는 해를 구할 수 있는 단계까지는 이르지 못하고 있다.