• 제목/요약/키워드: 성에 대한 대화

검색결과 517건 처리시간 0.028초

KMSS: Korean Media Script Dataset for Dialogue Summarization (대화 요약 생성을 위한 한국어 방송 대본 데이터셋 )

  • Bong-Su Kim;Hye-Jin Jun;Hyun-Kyu Jeon;Hye-in Jung;Jung-Hoon Jang
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.198-204
    • /
    • 2022
  • 대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.

  • PDF

Dynamic Sentence General ion for a Conversational Agent Using Sentence Plan Tree and Genetic Programming (문장계획 트리와 유전자 프로그래밍을 이용한 대화형 에이전트의 동적 문장생성)

  • Lim Sungsoo;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.538-540
    • /
    • 2005
  • 대화형 에이전트가 다양한 분야에서 적용됨에 따라서 현실성 있는 대화 생성을 위한 자연언어 생성에 대한 연구가 관심을 끌고 있다. 대화형 에이전트에서는 보통 미리 준비된 문장을 이용하여 사용자와 대화를 수행하지만, 최근에는 문장을 동적으로 생성하고 학습함으로써 보다 유연하고 현실성있는 서비스를 제공하는 대화형 에이전트가 활발히 연구되고 있다. 본 논문에서는 문장계획 트리를 인코딩 방법으로 적용한 대화형 유전자 프로그래밍을 통해 대화형 에이전트의 문장을 생성하는 방법을 제안한다. 피험자 12명을 대상으로 템플릿 기반 시스템과의 비교 실험결과, 제안하는 방법의 유용성을 확인할 수 있었다.

  • PDF

A Korean to English Dialogue Machine Translation System ($\Rightarrow$영 대화체 기계번역 시스템)

  • 서정연
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.65-70
    • /
    • 1994
  • 대화체는 문어체와는 달리 생략과 대용현상이 빈번히 발생하고, 문장의 표면적 의미외에 화자가 전달하고자 하는 의도를 내포하고 있다. 그러므로 대화체 번역은 언어적 분석에 의한 단순한 번역이 아닌, 이해에 기반한 번역이어야 한다. 본 논문에서는 대화의 상황을 모델링한 대화모델을 이용하여 이해에 기반한 대화체 기계번역을 시도하였다. 또한 대화체 기계번역이 자동통역 등에 응용된다고 할 때, 실시간 번역과 불완전한 입력과 같은 예외 상황에 대한 적절한 대응이 보장되어야 한다. 이러한 점을 반영하기 위하여 지식기반 모델과 확률 기반 모델을 결합한 해석, 생성 시스템을 구현하여 효율성과 견고성을 갖춘 이해에 기반한 대화체 기계번역 시스템을 연구하고자 한다. 이 연구는 한국통신으로부터 지원을 받아서 수행하고 있는 과제로써 현재 3000단어 수준의 실제 대화를 대상으로 한->영 대화 번역에 대해 실험을 하고 있으며, 시스템의 확장성을 고려한 지식 베이스-사전, 문법 등-를 구축하였다.

  • PDF

A Query-aware Dialog Model for Open-domain Dialog (입력 발화의 키워드를 반영하는 응답을 생성하는 대화 모델)

  • Lim, Yeon-Soo;Kim, So-Eon;Kim, Bong-Min;Jung, Heejae;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.274-279
    • /
    • 2020
  • 대화 시스템은 사용자의 입력 발화에 대해 적절하고 의미 있는 응답을 생성하는 시스템으로 seq2seq 구조를 갖는 대화 모델이 주로 연구되고 있다. 그러나 seq2seq 기반 대화 모델은 입력 발화와 관련성이 떨어지는 응답을 생성하거나 모든 입력 발화와 어울리지만 무미건조한 응답을 생성하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 입력 발화에서 고려해야 하는 키워드를 찾고 그 키워드를 반영하는 응답을 생성하는 모델을 제안한다. 제안 모델은 주어진 입력 발화에서 self-attention을 사용해 각 토큰에 대한 키워드 점수를 구한다. 키워드 점수가 가장 높은 토큰을 대화의 주제 또는 핵심 내용을 포함하는 키워드로 정의하고 응답 생성 과정에서 키워드와 관련된 응답을 생성하도록 한다. 본 논문에서 제안한 대화 모델의 실험 결과 문법과 입력 발화와 생성한 응답의 관련성 측면에서 성능이 향상되었음을 알 수 있었다. 특히 관련성 점수는 본 논문에서 제안한 모델이 비교 모델보다 약 0.25점 상승했다. 실험 결과를 통해 본 논문이 제안한 모델의 우수성을 확인하였다.

  • PDF

Performance Estimation of Stream Synchronization Mechanism using Insertion Interactive Object and Variable Suffer (상호대화형 객체 삽입과 가변 버퍼 정책을 이용한 스트림 동기화 기법의 성능 평가)

  • 이병문;이양민;이재기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (C)
    • /
    • pp.58-60
    • /
    • 2003
  • 현재 시간성에 민감한 서비스가 인터넷상에서 중요한 위치물 차지하고 있다 시간성이 민감한 서비스는 사용자와 상호대화를 가능케 하는 미디어 전송 방법 및 연속적 재생을 보장하기 위한 버퍼 정책이 요구된다 관련 연구에서는 설러 방법을 통해 동기화를 달성하고 있으나 상호대화라는 측면에서는 만족할 만한 해결책을 제시하지 못하고 있다. 본 논문에서는 상호대화형 객체(Interactive Object)를 각 미디어 파일에 삽입하고 객체들이 서로의 정보를 이용할 수 있는 함수를 설계하여 실시간에 원하는 미디어 프레임의 재생위치를 찾아냄으로써 동기화와 상호대화성이라는 문제를 해결하였다. 또한 네트워크에 대한 의존성 때문에 발생하는 불연속적인 재생은 크기를 변화시킬 수 있는 가변 버퍼를 이용함으로써 해결하였다. 그리고 두 가지 방법을 적용한 기법의 우수성을 시뮬레이션 실험을 통하여 확인하였다.

  • PDF

Analysis of Discourse Structure using Neural Network in Dialogue Sentences (신경망을 이용한 대화체 문장의 담화 구조 분석)

  • 김학수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.419-424
    • /
    • 1998
  • 담화 구조를 파악하기 위한 대표적인 방법으로 Litman과 Allen 의 계획 기법에 의한 것과 RDTN을 이용한 것을 들 수 있다. 그 중에서도 RDTN을 이용하여 대화의 흐름을 파악하려는 시도는 간단하며, 결정적이라는 장점이 있는 반면에 몇 가지 단점도 가지고 있다. RETN을 이용한 대화 분석의 가장 큰 단점은 정확히 분석된 화행을 입력으로 사용한다는 것이다. 즉, 현 상태에서 다음 상태로의 전이에 정의된 화행 이외의 화행이 입력으로 사용되면 분석을 실패하게 된다. 또 하나의 단점은 RDTN 이 어느정도 영역에 의존적인 특성을 보인다는 것이다. 본 논문에서는 이러한 확장성에 대한 문제점을 해결하고, 화행 분석의 어려움을 덜기 위해 신경망을 이용한 새로운 대화 전이망을 제안한다. 제안된 대화 전이 신경망은 지역적 대화 전이 신경망과 전역적 대화 전이 신경망은 이전의 두 발화와 현재 발화와의 관계를 살펴서 현재 발화가 이전 대화의 연속인지, 새로운 대화이 시작인지, 아니면 부대화의 시작인지를 결정하는 역할은 한다.전역적 대화전이 신경망은 담화 스택과의 상호 작용을 통해 담화의 전체구조를 살피고,전체 담화 구조에서 현재 발화가 어떤 역할을 하는지를 결정한다.

  • PDF

DBERT: Embedding Model Based on Contrastive Learning Considering the Characteristics of Multi-turn Context (DBERT: 멀티턴 문맥의 특징을 고려한 대조 학습 기반의 임베딩 모델링)

  • Sangmin Park;Jaeyun Lee;Jaieun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.272-274
    • /
    • 2022
  • 최근에는 사람과 기계가 자유롭게 대화를 주고받을 수 있는 자유 주제 대화 시스템(Open-domain Dialogue System)이 다양한 서비스에 활용되고 있다. 자유 주제 대화 시스템이 더욱 다양한 답변을 제공할 수 있도록 사전학습 기반의 생성 언어모델이 활용되고 있지만, 답변 제공의 안정성이 떨어져 검색을 활용한 방법 또한 함께 활용되고 있다. 검색 기반 방법은 사용자의 대화가 들어오면 사전에 구축된 데이터베이스에서 유사한 대화를 검색하고 준비되어있는 답변을 제공하는 기술이다. 하지만 멀티턴으로 이루어진 대화는 일반적인 문서의 문장과 다르게 각 문장에 대한 발화의 주체가 변경되기 때문에 연속된 발화 문장이 문맥적으로 밀접하게 연결되지 않는 경우가 있다. 본 논문에서는 이와 같은 대화의 특징을 고려하여 멀티턴 대화를 효율적으로 임베딩 할 수 있는 DBERT(DialogueBERT) 모델을 제안한다. 기존 공개된 사전학습 언어모델 기반의 문장 임베딩 모델과 비교 평가 실험을 통해 제안하는 방법의 우수성을 입증한다.

  • PDF

Knowledge-grounded Dialogue Generation Using Domain-level Learning Approach for Practical Services (현업 서비스를 위한 도메인 수준 학습 방법을 활용한 지식 기반 대화생성)

  • Chae-Gyun Lim;Young-Seob Jeong;ChangWon Ok;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.619-623
    • /
    • 2022
  • 대화생성은 대규모 학습 데이터로부터 사전 학습된 언어모델을 활용한 도전적인 다운스트림 태스크 중 하나이다. 대화에서 특정한 지식에 대한 맥락이 보존된 응답 문장을 생성하기 위한 기술의 일환으로써 지식 기반 대화생성이 연구되고 있으며, 현업에서는 사업목표에 따른 대화 서비스를 제공하는 목적으로 이러한 기술을 적용할 수 있다. 본 논문에서는, 각각의 서비스 도메인에 특화된 모델을 적절히 활용 가능하도록 전체 데이터를 도메인별로 구분하여 학습한 다수의 대화생성 모델을 구축한다. 또한, 특정 도메인의 데이터로 학습된 모델이 나머지 도메인에서 어떤 수준의 대화생성이 가능한지 비교 분석함으로써 개별 학습된 모델들이 도메인의 특성에 따라 서로 다른 영향력이나 연관성을 나타낼 가능성을 확인한다. 이러한 실험적인 분석 결과를 바탕으로 현업의 서비스에서 개별 도메인에 특화된 모델이 적절히 활용하는 것이 유용함을 확인하고자 한다.

  • PDF

CommonAI: Quantitative and qualitative analysis for automatic-generation of Commonsense Reasoning sentence suitable for AI (AI에 적합한 일반상식 문장의 자동 생성을 위한 정량적, 정성적 연구)

  • Hyeon Gyu Shin;YoungSook Son
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.153-159
    • /
    • 2022
  • 본 논문에서는 인공지능이 생성하는 일상 대화의 품질 향상을 위해 상식 추론을 정의하고 설문을 통해 정량적, 정성적 분석을 진행하였다. 정량적 평가에서는 주어진 문장이 에게 학습시키기에 적합한가'라는 수용성 판단을 요청한 질문에서 40대 이상의 연령이 20, 30대와 유의미한 차이를 보였다. 정성적 평가에서는 '보편적 사실 여부'를 AI 발화 기준의 주요한 지표로 보았다. 이어서 '챗봇' 대화의 품질에 대한 설문을 실시했다. 이를 통해 일상 대화를 사용한 챗봇의 대화 품질을 높이기 위해서는 먼저, 질문의 요구에 적절한 정보와 공감을 제공해야 하고 두 번째로 공감의 정도가 챗봇의 특성에 맞는 응답이어야 하며 세 번째로 대화의 차례에 따라 담화의 규칙을 지키면서 대화가 진행되어야 한다는 결론을 얻을 수 있었다. 이 세 가지 요건이 통합적으로 적용된 담화 설계를 통해 완전히 인공지능스러운 대화가 가능할 것으로 여겨진다.

  • PDF

Multi Domain Dialog State Tracking using Domain State (도메인 상태를 이용한 다중 도메인 대화 상태 추적)

  • Jeon, Hyunmin;Lee, Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.421-426
    • /
    • 2020
  • 다중 도메인 목적 지향 대화에서 기존 딥 러닝을 이용한 대화 상태 추적(Dialog state tracking)은 여러 턴 동안 누적된 사용자와 시스템 간 대화를 입력 받아 슬롯 밸류(Slot value)를 추출하는 모델들이 연구되었다. 하지만 이 모델들은 대화가 길어질수록 연산량이 증가한다. 이에 본 논문에서는 다중 도메인 대화에서 누적된 대화의 history 없이 슬롯 밸류를 추출하는 방법을 제안한다. 하지만, 단순하게 history를 제거하고 현재 턴의 발화만 입력 받는 방법은 문맥 정보의 손실로 이어진다. 따라서 본 논문에서는 도메인 상태(Domain state)를 도입하여 매 턴 마다 대화 상태와 함께 추적하는 모델을 제안한다. 도메인 상태를 같이 추적함으로써 현재 어떠한 도메인에 대하여 대화가 진행되고 있는지를 파악한다. 또한, 함축된 문맥 정보를 담고 있는 이전 턴의 대화 상태와 도메인 상태를 현재 턴의 발화와 같이 입력 받아 정보의 손실을 줄였다. 대표적인 데이터 셋인 MultiWOZ 2.0과 MultiWOZ 2.1에서 실험한 결과, 대화의 history를 사용하지 않고도 대화 상태 추적에 있어 좋은 성능을 보이는 것을 확인하였다. 또한, 시스템 응답과 과거 발화에 대한 의존성을 제거하여 end-to-end 대화 시스템으로의 확장이 좀 더 용이할 것으로 기대된다.

  • PDF