• Title/Summary/Keyword: 성막

Search Result 218, Processing Time 0.025 seconds

DEVELOPMENT OF A BIOACTIVE CELLULOSE MEMBRANE FROM SEA SQUIRT SKIN FOR BONE REGENERATION - A PRELIMINARY RESEARCH (멍게와 미더덕 피부의 천연 셀룰로오스 각질을 이용한 골재생 효능을 가진 생활성막의 개발 - 예비 연구)

  • Kim, Soung-Min;Lee, Jong-Ho;Jo, Joung-Ae;Lee, Seung-Cheol;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.440-453
    • /
    • 2005
  • Objectives : To develop a bioactive membrane for guided bone regeneration (GBR), the biocompatibility and bone regenerating capacity of the cellulose membrane obtained from the Ascidians squirt skin were evaluated. Materials and methods : After processing the pure cellulose membrane from the squirt skin, the morphological study, amino acid analysis and the immunoreactivity of the cellulose membrane were tested. Total eighteen male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into two control (n=8) and another two experimental groups (n=10). In the first experimental group (n=5), the cellulose membrane was applicated to the 8.0 mm sized calvarial bone defect and the same sized defect was left without cellulose membrane in the first control group (n=4). In the another experimental group (n=5), the cellulose membrane was applicated to the same sized calvarial bone defect after femoral bone graft and the same sized defect with bone graft was left without cellulose membrane in the another control group (n=4). Each group was sacrificed after 6 weeks, the histological study with H&E and Masson trichrome stain was done, and immunohistochemical stainings of angiogenin and VEGF were also carried out. Results : The squirt skin cellulose showed the bio-inductive effect on the bone and mesenchymal tissues in the periosteum of rat calvarial bone. This phenomenon was found only in the inner surface of the cellulose membrane after 6 weeks contrast to the outer surface. Bone defect covered with the bioactive cellulose membrane showed significantly greater bone formation compared with control groups. Mesenchymal cells beneath the inner surface of the bioactive cellulose membrane were positive to the angiogenin and VEGF antibodies. Conclusion : We suppose that there still remains extremely little amount of peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx. This composition could prevent the adverse immunological hypersensitivity and also induce bioactive properties of cellulose membrane. These properties induced the effective angiogenesis with rapid osteogenesis beneath the inner surface of cellulose membrane, and so the possibilities of clinical application in dental field as a GBR material will be able to be suggested.

GaN Epitaxy with PA-MBE on HF Cleaned Cobalt-silicide Buffer Layer (HF 크리닝 처리한 코발트실리사이드 버퍼층 위에 PA-MBE로 성장시킨 GaN의 에피택시)

  • Ha, Jun-Seok;Chang, Ji-Ho;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.409-413
    • /
    • 2010
  • We fabricated 10 nm-thick cobalt silicide($CoSi_2$) as a buffer layer on a p-type Si(100) substrate to investigate the possibility of GaN epitaxial growth on $CoSi_2/Si(100)$ substrates. We deposited 500 nm-GaN on the cobalt silicide buffer layer at low temperature with a PA-MBE (plasma assisted-molecular beam epitaxy) after the $CoSi_2/Si$ substrates were cleaned by HF solution. An optical microscopy, AFM, TEM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. For the GaN samples without HF cleaning, they showed no GaN epitaxial growth. For the GaN samples with HF cleaning, they showed $4\;{\mu}m$-thick GaN epitaxial growth due to surface etching of the silicide layers. Through XRD $\omega$-scan of GaN <0002> direction, we confirmed the cyrstallinity of GaN epitaxy is $2.7^{\circ}$ which is comparable with that of sapphire substrate. Our result implied that $CoSi_2/Si(100)$ substrate would be a good buffer and substrate for GaN epitaxial growth.

A Study on the Magnetic Anisotropy of Co-Cr-(Ta) Thin Films for Perpendicular Magnetic Recording (Co-Cr-(Ta) 수직자기기록용 박막의 자기이방성에 대한 연구)

  • 황충호;박용수;신경호;이택동
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.208-214
    • /
    • 1993
  • In order to investigate the origin of an increase in the coercivity with the Ta addition to Co-Cr films, the perpendicular magnetic anisotropy of Co-Cr film and CoCrTa film was measured by a torque magnetometer and VSM. In Co-Cr binary alloy film, the uniaxial anisotropy increased with increasing Cr content. The perpendicular magnetic anisotropy of $Co_{81.7}Cr_{16.7}Ta_{1.6}$ film was larger than that of $Co_{81}Cr_{19}$ film, both of which were deposited at the same substrate temperature of $100^{\circ}C$. The change in the perpendicular magnetic anisotropy with annealing was studied to understand the Ta addition effect. The amount of decrease in perpendicular magnetic anisotropy of the CoCrTa film by the annealing was larger than that of Co-Cr film. And the perpendicular magnetic anisotripies of Co-Cr film and CoCrTa film after annealing were almost the same. The cause of this was interpretated as the enhanced segregation of solute atoms in the Ta added thin film in the as-deposited state. The enhanced segregation of solute atoms increases the perpendicular magnetic anisotropy of the film, and causes the increase of perpendicular coercivity of the film.

  • PDF

Tunnel Magnetoresistance with Top Layer Plasma Oxidation Time in Doubly Oxidized Barrier Process (이중 절연층 공정에서 상부절연층의 산화시간에 따른 터널자기저항 특성연구)

  • Lee, Ki-Yung;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.99-102
    • /
    • 2002
  • We fabricated TMR devices which have doubly oxidized tunnel barrier using plasma oxidation method to form homogeneously oxidized AlO tunnel barrier. We sputtered 10 $\AA$-bottom Al layer and oxidized it with oxidation time of 10 sec. Subsequent sputtering of 13 $\AA$-Al was performed and the metallic layer was oxidized for 50, 80, and 120 sec., respectively. The electrical resistance changed from 500 Ω to 2000 Ω with increase of oxidation time, while variation of MR ratio was little spreading 27∼31 % which is larger than that of TMR device of ordinary single tunnel barrier. We calculated effective barrier height and width by measuring I-V curves, from which we found the barrier height was 1.3∼1.8 eV sufficient for tunnel barrier, and the barrier width (<15.0 $\AA$) was smaller than physical thickness. Our results may be caused by insufficient oxidation of Al precursor into A1$_2$O$_3$. However, doubly oxidized tunnel barriers were superior to conventional single tunnel barrier in uniformity and density. Our results imply that we were able to improve MR ratio and tune resistance by employing doubly oxidized tunnel barrier process.

Effect of Doubly Plasma Oxidation Time on TMR Devices (이중절연층 산화공정에서 플라즈마 산화시간에 따른 터널자기저항 효과)

  • Lee, Ki-Yung;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.127-131
    • /
    • 2002
  • We fabricated MTJ devices that have doubly oxidized tunnel barrier using plasma oxidation method to from oxidized AlO$\sub$x/ tunnel barrier. Doubly oxidation I, which sputtered 10 ${\AA}$-bottom Al layer and oxidized it with oxidation time of 10 s. Subsequent sputtering of 13 ${\AA}$-Al was performed and the metallic layer was oxidized for 50, 80 and 120 s., respectively. Doubly oxidation II, which sputtered 10 ${\AA}$-bottom Al layer and oxidized it varying oxidation time for 30∼120 s. Subsequent sputtering of 13 ${\AA}$-Al was performed and the metallic layer was oxidized for 210 sec. Double oxidation process specimen showed MR ratio of above 27% in all experiment range. Singly oxidation process. 13 ${\AA}$-Al layer and oxidized up to 210 s, showed less MR ratio and more narrow process window than those of doubly oxidation. Cross-sectional TEM images would that doubly oxidized barrowers were thinner and denser than singly oxidized ones. XPS characterization confirmed that doubly oxidation of Fe with bottom insulating layer. As a result, doubly oxidation could have superior MR ratio in process extent during long oxidation time because of preventing oxidation of bottom magnetic layer than singly oxidation.

Effect of processing parameters on TiO2 film by room temperature granule spray in vacuum (상온진공과립분사에 의한 TiO2 코팅층에 미치는 공정변수의 영향)

  • Kim, Han-Gil;Park, Yoon-Soo;Bang, Kook-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • $TiO_2$ films, thickness of $1{\sim}30{\mu}m$ were deposited on glass substrate at room temperature by room temperature granule spray in vacuum. The starting powder was calcinated at $600^{\circ}C$ for 4 h using $Al_2O_3$ crucible in the furnace. The particle size of the $TiO_2$, $1.5{\mu}m$ was measured by a particle size analyzer. The effect of different process parameters such as number of pass, gas flow rate and feeder voltage was studied. As the number of passes increased, the film thickness increased proportionally due to adequate kinetic energy conserved. The effect of three different flow rates (i.e. 15, 25, and 35 LPM) on deposited film was investigated. As gas flow rate increased, the film thickness increased up to 25 LPM and then decreased. Higher feeder voltage with low flow rate of 15 LPM resulted in unsufficient coating thickness due to insufficient kinetic energy. Microstructure of $TiO_2$ films was investigated by scanning electron microscope and high resolution tramission electron microscope.

The protection effects from water vapor permeation of inorganic films prepared by electron-beam evaporation technique (전자-선 증착 기술에 의해 성막된 다양한 무기 박막들의 투습 방지 특성)

  • Ryu, Sung-Won;Rhee, Byung-Roh;Kim, Hwa-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Various diatomic inorganic films and their composite films are packed as passivation films covering Ca cells on glass substrates by using an electron-beam evaporation technique. When these Ca cells are exposed to an ambient atmosphere, the water vapor penetrating through the passivation layers is absorbed in the Ca cells, resulting in a gradual progress of transparency in the Ca cells, which can be represented by changes of the optical transmittance in the visible range. Compared with the saturation times for the Ca cells to become completely transparent in the atmosphere, the protection effects of water vapor are estimated for various passivation films. The composite films consisting silicon oxide($SiO_2$) and tin oxide($SnO_2$) or zinc oxide(ZnO) are found to show a superior protection effect of water vapor as compared with diatomic inorganic films. Also, the main factors affecting the permeation of water vapor through the oxide films are found to be the polarizability and the packing density.

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA/THS-PSA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 가교된 PVA/PSSA-MA/THS-PSA의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Kim, Il-Hyoung;Kim, Sung-Pyo;Lee, Hak-Min;Park, Chan-Jong;Rhim, Ji-Won;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.299-305
    • /
    • 2011
  • This study deals with the preparation of polymeric electrolyte membranes having high durability for the application of fuel cells. The membranes under investigation were prepared the impregnation to porous polyethylene membranes with poly(vinyl alcohol)(PVA), poly(styrene sulfonic acid-co-maleic acid), and (PSSA-MA)3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA). To characterize the resulting membranes, the water contents, the contact angles, FT-IR, the proton conductivity and the the modulus were measured. The proton conductivity of 30% content of THS-PSA at $55^{\circ}C$ gave excellent $1.27{\times}10^{-1}S/cm$ and the mechanical strength was improved 7 times higher up to the THS-PSA content 15%, as a result, the durability was elevated extensively.

The Study on the Separation Characteristics of ion with ion Exchange Membrane - I.The Characteristics of ion Exchange Membrane with the Separator of All-Vanadium Redox Flow Battery - (이온교환막을 이용한 이온의 분리특성에 관한 연구 - I. 전바나듐계 레독스-흐름 전지의 격막용 이온 교환막의 특성 -)

  • Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.393-402
    • /
    • 1993
  • Redox flow secondary battery have been studied actively as one of the most promising electrochemical energy storage devices for a wide range of applications, such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants. In all-vanadium redox flow battery using solution of vanadium-sulfuric acid as a active material, the difficulty in developing an efficient ion selective membrane can still be identified. The asymmetric cation exchange membrane(M-30) as a separator of all-vanadium redox flow battery which were obtained by the reaction of chlorosulfonation for 30 minutes under the irradiation of UV, showed its superiority in the transport number of 0.94 and electrical resistivity of $0.5{\Omega}{\cdot}cm^2$. The base membrane were prepared by lamination a low density polyethlene film of $10{\mu}m$ thickness on polyolefin membrane(HIPORE 120). The electrical resistivity of M-30 membrane in real solution of vanadium-sulfuric acid was $3.79{\Omega}{\cdot}cm^2$ and it was similar to that of Nafion 117 membrane. Also the cell resistivity was $6.6{\Omega}{\cdot}cm^2$and lower than that of Nafion 117. In considertion of electrochemical properties and costs of membranes, M-30 membrane was better than that of Nafion 117 and CMV of Asahi glass Co. as a separator of all-vanadium redox flow battery.

  • PDF

Property of Nickel Silicides on ICP-CVD Amorphous Silicon with Silicidation Temperature (ICP-CVD 비정질 실리콘에 형성된 처리온도에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Jong-Ryul;Choi, Young-Youn;Park, Jong-Sung;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.303-310
    • /
    • 2008
  • We fabricated hydrogenated amorphous silicon(a-Si:H) 140 nm thick film on a $180\;nm-SiO_2/Si$ substrate with an inductively-coupled plasma chemical vapor deposition(ICP-CVD) equipment at $250^{\circ}C$. Moreover, 30 nm-Ni film was deposited with a thermal-evaporator sequently. Then the film stack was annealed to induce silicides by a rapid thermal annealer(RTA) at $200{\sim}500^{\circ}C$ in every $50^{\circ}C$ for 30 minuets. We employed a four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), and scanning probe microscope(SPM) in order to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure evolution, and surface roughness, respectively. We confirmed that nano-thick high resistive $Ni_3Si$, mid-resistive $Ni_2Si$, and low resistive NiSi phases were stable at the temperature of <300, $350{\sim}450^{\circ}C$, and >$450^{\circ}C$, respectively. Through SPM analysis, we confirmed the surface roughness of nickel silicide was below 12 nm, which implied that it was superior over employing the glass and polymer substrates.