• Title/Summary/Keyword: 성능효율

Search Result 15,171, Processing Time 0.055 seconds

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

A Comparative Study of Subset Construction Methods in OSEM Algorithms using Simulated Projection Data of Compton Camera (모사된 컴프턴 카메라 투사데이터의 재구성을 위한 OSEM 알고리즘의 부분집합 구성법 비교 연구)

  • Kim, Soo-Mee;Lee, Jae-Sung;Lee, Mi-No;Lee, Ju-Hahn;Kim, Joong-Hyun;Kim, Chan-Hyeong;Lee, Chun-Sik;Lee, Dong-Soo;Lee, Soo-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • Purpose: In this study we propose a block-iterative method for reconstructing Compton scattered data. This study shows that the well-known expectation maximization (EM) approach along with its accelerated version based on the ordered subsets principle can be applied to the problem of image reconstruction for Compton camera. This study also compares several methods of constructing subsets for optimal performance of our algorithms. Materials and Methods: Three reconstruction algorithms were implemented; simple backprojection (SBP), EM, and ordered subset EM (OSEM). For OSEM, the projection data were grouped into subsets in a predefined order. Three different schemes for choosing nonoverlapping subsets were considered; scatter angle-based subsets, detector position-based subsets, and both scatter angle- and detector position-based subsets. EM and OSEM with 16 subsets were performed with 64 and 4 iterations, respectively. The performance of each algorithm was evaluated in terms of computation time and normalized mean-squared error. Results: Both EM and OSEM clearly outperformed SBP in all aspects of accuracy. The OSEM with 16 subsets and 4 iterations, which is equivalent to the standard EM with 64 iterations, was approximately 14 times faster in computation time than the standard EM. In OSEM, all of the three schemes for choosing subsets yielded similar results in computation time as well as normalized mean-squared error. Conclusion: Our results show that the OSEM algorithm, which have proven useful in emission tomography, can also be applied to the problem of image reconstruction for Compton camera. With properly chosen subset construction methods and moderate numbers of subsets, our OSEM algorithm significantly improves the computational efficiency while keeping the original quality of the standard EM reconstruction. The OSEM algorithm with scatter angle- and detector position-based subsets is most available.

Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings (MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교)

  • Park, Sang-Joon;Ryu, Young-Hoon;Jeon, Tae-Joo;Kim, Jai-Keun;Nam, Ji-Eun;Yoon, Pyeong-Ho;Yoon, Choon-Sik;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.490-496
    • /
    • 1998
  • Purpose: We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Materials and Methods: Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke-like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were Performed and imaging features were analyzed. Results: MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Conclusion: Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients.

  • PDF

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

Effect of Flywheel Weight on the Vibration of Diesel Engine (플라이휠 중량(重量)이 디젤 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Sung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.2
    • /
    • pp.167-180
    • /
    • 1993
  • Most of small size diesel engines are widely used with the same size and weight flywheel in the levels of 6.0kW and 7.5kW. This study was conducted to obtain basic data which affect the engine performance of the power tiller. The flywheel weight was considered as a major factor in this research. Basically, fuel consumption ratio, motoring loss, torque, vibration and mechanical efficiency of the engine were measured and analyzed on four levels of flywheel weight, 32.2, 29.4, 26.2 and $24.2kg_f$, respectively. Results were obtained as follows: 1. The weights of flywheel were $23.7kg_f$ from design program of JSME and $24.5kg_f$ from ASME and SAE design criteria. Therefore, the flywheel weight of $32.2kg_f$ might be reduced about $8kg_f$ in 7.5kW engine. 2. The rated outputs of 6.0kW and 7.5kW engine were actually 7.43kW and 7.85kW, respectively. When flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, outputs were increased from 7.43kW to 7.70kW in 6.0kW engine and from 7.85kW to 8.25kW in 7.5kW engine. 3. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, fuel consumption ratio was decreased from 300.8 to 296.8g/kW-hr in 6.0kW engine and also from 313.6 to 312.8g/kW-hr in 7.5 kW engine, respectively. 4. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, mechanical efficiency of engine was increased from 76.1% to 76.8% in 6.0kW engine and also from 76.7% to 77.0% in 7.5kW engine, respectively. 5. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, vibration was decreased at X-axis and Z-axis in 6.0kW engine, however, slightly increased at Y-axis in 6.0kW engine and at all axes in 7.5kW engine. 6. When the flywheel weight was reduced from $32.2kg_f$ to $24.4kg_f$ motoring loss was decreased from 2.33kW to 1.75kW in 6.0kW engine and also from 2.46kW to 1.84kW in 7.5kW engine.

  • PDF

A Study on the Utilzation of Two Furrow Combine (2조형(條型) Combine의 이용(利用)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 1976
  • This study was conducted to test the harvesting operation of two kinds of rice varieties such as Milyang #15 and Tong-il with a imported two furrow Japanese combine and was performed to find out the operational accuracy of it, the adaptability of this machine, and the feasibility of supplying this machine to rural area in Korea. The results obtained in this study are summarized as follows; 1. The harvesting test of the Milyang #15 was carried out 5 times from the optimum harvesting operation was good regardless of its maturity. The field grain loss ratio and the rate of unthreshed paddy were all about 1 percent. 2. The field grain loss of Tong-il harvested was increased from 5.13% to 10.34% along its maturity as shown in Fig 1. In considering this, it was needed that the combine mechanism should be improved mechanically for harvesting of Tong-il rice variety. 3. The rate of unthreshed paddy of Tong-il rice variety of which stem was short was average 1.6 percent, because the sample combine used in this study was developed on basisof the long stem variety in Japan, therefore some ears owing to the uneven stem of Tong-il rice could nat reach the teeth of the threshing drum. 4. The cracking rates of brown rice depending mostly upon the revolution speed of the threshing drum(240-350 rpm) in harvesting of Tong-il and Milyang #15 were all below 1 percent, and there was no significance between two varieties. 5. Since the ears of Tong-il rice variety covered with its leaves, a lots of trashes was produced, especially when threshed in raw materials, and the cleaning and the trashout mechanisms were clogged with those trashes very often, and so these two mechanisms were needed for being improved. 6. The sample combine of which track pressure was $0.19kg/cm^2$ could drive on the soft ground of which sinking was even 25cm as shown in Fig 3. But in considering the reaping height adjustment, 5cm sinking may be afford to drive the combine on the irregular sinking level ground without any readjustment of the resaping height. 7. The harvesting expenses per ha. by the sample combine of which annual coverage area is 4.7 ha. under conditions that the yearly workable days is 40, percentage of days being good for harvesting operation is 60%, field efficiency is 56%, working speed is 0.273m/sec, and daily workable hours is 8 hrs is reasonable to spread this combine to rural area in Korea, comparing to the expenses by the conventional harvesting expenses, if mechanical improvement is supplemented so as to harvest Tong-il rice. 8. In order to harvest Tong-il rice, the two furrow combine should be needed some mechanical improvements that divider can control not to touch ears of paddy, the space between the feeding chain and the thrshing drum is reduced, trash treatment apparatus must be improved, fore and rear adjust-interval is enlarged, and width of track must be enlarged so as to drive on the soft ground.

  • PDF

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.