• Title/Summary/Keyword: 성능해석프로그램

Search Result 786, Processing Time 0.035 seconds

Computer Simulation Study for Analyzing Alternative Refrigerants in Residential Air-conditioners (가정용 냉방기의 대체 냉매 성능 분석을 위한 전산 해석 연구)

  • Yoo, Hwaan-Kyu;Jung, Dong-Soo
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.75-90
    • /
    • 1995
  • This paper is concerned about alternative refrigerants for HCFC22 used in room air conditioners and heat pumps. Computer simulation of residential air conditioners using refrigerant mixtures is carried out. Following refrigerants are selected as the pure refrigerants constituting the mixtures studied: R32, R124, R125, R134, R134a, R143a and R152a. Simulation results are presented fur the following mixtures: R32/R134a, R32/R152a, R32/R134, R32/R124, R143a/R134a, R143a/R152a, R143a/R124, R125/R134a, R125/R152a, R125/R124, R32/R152a/R134a, R32/R152a/R134, R32/R152a/R124. The best fluid is found to be the ternary mixture of R32/R152a/R124. For that mixture, the coefficient of performance(COP) and volumetric capacity for refrigeration(VCR) are 13.7% larger and 23% smaller than the respective values for HCFC22. R32/R124 mixture is the best binary fluid pair whose COP and VCR are 13.4% larger and 9.6% smaller than those for HCFC22.

  • PDF

A study on the Optimal Configuration Algorithm for Modeling and Improving the Performance of PV module (태양광모듈의 모델링 및 성능향상을 위한 최적구성방안에 관한 연구)

  • Jeong, Jong-Yun;Choi, Sung-Sik;Choi, Hong-Yeol;Ryu, Sang-Won;Lee, In-Cheol;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.723-730
    • /
    • 2016
  • Solar cells in a PV module are connected in series and parallel to produce a higher voltage and current. The PV module has performance characteristics depending on solar radiation and temperature. In addition, the PV system causes power loss by special situations, including the shadows of the surrounding environment, such as nearby buildings and trees. In other words, an increase in power loss and a decrease in life cycle can occur because of the partial shadow and hot-spot effect. Therefore, this paper proposes the optimal configuration algorithm of a bypass diode to improve the output of a PV module and one of a PV array to minimize the loss of the PV array. In addition, this paper presents a model of a PV module and PV array based on the PSIM S/W. The simulation results confirmed that the proposed optimal configuration algorithms are useful tools for improving the performance of PV system.

A Study on the Optimization of Main Dimensions of a Ship by Design Search Techniques based on the AI (AI 기반 설계 탐색 기법을 통한 선박의 주요 치수 최적화)

  • Dong-Woo Park;Inseob Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1231-1237
    • /
    • 2022
  • In the present study, the optimization of the main particulars of a ship using AI-based design search techniques was investigated. For the design search techniques, the SHERPA algorithm by HEEDS was applied, and CFD analysis using STAR-CCM+ was applied for the calculation of resistance performance. Main particulars were automatically transformed by modifying the main particulars of the ship at the stage of preprocessing using JAVA script and Python. Small catamaran was chosen for the present study, and the main dimensions of the length, breadth, draft of demi-hull, and distance between demi-hulls were considered as design variables. Total resistance was considered as an objective function, and the range of displaced volume considering the arrangement of the outfitting system was chosen as the constraint. As a result, the changes in the individual design variables were within ±5%, and the total resistance of the optimized hull form was decreased by 11% compared with that of the existing hull form. Throughout the present study, the resistance performance of small catamaran could be improved by the optimization of the main dimensions without direct modification of the hull shape. In addition, the application of optimization using design search techniques is expected for the improvement in the resistance performance of a ship.

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Shear Behavior of Web Element in PSC Beams Incorporated with Arch Action (아치작용을 고려한 PSC보의 복부전단거동)

  • Jeong, Je Pyong;Shin, Geun Ock;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • It is well known that axial tension decreases the shear strength of RC & PSC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear resistance capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the shear strength in web is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams by nonlinear FEM program (ATENA-2D).

Analysis on the Internal Flow of the Hydraulic Dual Chambers Applying Various Orifice (다양한 오리피스를 이용한 연결형 공압 챔버 내부 유동 해석)

  • Cho, Kihong;Park, Jungho;Kim, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.58-64
    • /
    • 2014
  • Hydraulic dual chamber, as the simulator for a dual pulse rocket motor, was tested by a high pressure device with various orifice-hole size being applied. Pressure difference occurs between 1st chamber and 2nd chamber depending on area ratio of the orifice to nozzle throat. Studying a design configuration of the orifice is essential to the motor development because pressure difference severely affects the rocket motor performance. It is noticed in this study that energy dissipation is caused by the vortex flow originating from the orifice as the 2nd chamber is operated. The flow field is simulated by a commercial computational fluid dynamics program, ANSYS FLUENT V14.5.

The Development of Mechanical Damper Using the Friction Pendulum Principle (마찰 진자 원리를 적용한 기계식 댐퍼의 개발에 관한 연구)

  • Lee, You-In;Han, Woo-Jin;Ji, Yong-Soo;Baek, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • Recently, the earthquake has been increasing a lot, damage of electric power facility has been serious as well. Nowadays, the importance of pipe support system such as Hanger, Brace, Snubber connecting the main structure have been emphasized. These devices can prevent pipe from damage so that reduce the vibration and shock acting on the pipe. For this reason, the FCD(Friction Concave Damper) was developed and has been expected to reduce the vibration on the pipe through the Friction Pendulum System. This paper was described the introduction of self-developed mechanical damper using the friction pendulum principle and the characteristic test was performed to verify the performance of the device. Additionally the test results have been compared with predicted F.A.P(FCD Analysis Program-self developed) results. As a result, reliability of design could be improved.

A Probabilistic Corrosion Rate Estimation Model for Longitudinal Strength Members of Tanker Structures (유조선 종강도부재의 확률론적 부식속도 예측모델의 개발)

  • Jeom-Kee Paik;Young-Eel Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.83-93
    • /
    • 1998
  • The twin aims of the present study are to develop a PC program for the statistical analysis of the measured cohesion data and to suggest a probabilistic corrosion rate estimation model for longitudinal members of tanker structures. A data analysis for the corrosion rate statistics(i.e., mean, standard deviation) as a function of the corrosion parameters is established for various structural member categories/locations of interest. Development of the computer program is focused on possible operation together with future addition of more corrosion data as they become available. To investigate the influence of the corrosion protection scheme a series of the corrosion analysis varying the life of coating are carried out and several different corrosion models as a function of time are suggested depending on the coating life.

  • PDF

Approximate Shape Optimization Technique by Sequential Design Domain (순차설계영역을 이용한 근사 형상최적에 관한 연구)

  • 김우현;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • Mechanical design process is generally accomplished by design, analysis, and test. Designers use programs fitting purpose, and obtain repeatedly a response of a simulation program, a sub-program for optimization. In this paper, shape optimization using approximate optimization technique is carried out with sequential design domain(SDD). In addition, algorithm executing Pro/Engineer and ANSYS automatically are adopted in the approximate optimization program by SDD. It is difficult for design problem to be approximated accurately for the whole range of design space. However, more or less accurate approximation is constructed if SDD is applied to that case. SDD starts with a certain range which is off-seted from midpoint of an initial design domain and then SDD of the next step is determined by a move limited. Convergence criterion is defined such that optimal point must be located within SDD during the two steps. Also, the PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information and the active set strategy, in order to seek the direction of design variables.

Vibratory Loads Reduction of a Rotor in Slow Descent using Higher Harmonic Control Technology (고조파제어(HHC) 기법을 이용한 저속 하강 비행중인 로터의 진동하중 억제에 관한 연구)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.440-447
    • /
    • 2013
  • In this paper, a higher harmonic control (HHC) methodology is applied to find the optimum input scenario for the vibratory hub loads reduction. A comprehensive aeroelastic analysis code, CAMRAD II, is used to model the HART (Higher-harmonic-control Aeroacoustic Rotor Test) II rotor, and parametric study is conducted for the best HHC inputs leading to a minimum vibration (MV) condition. The resulting outcomes are compared with the earlier HART II test results. It is indicated that the control input adopted in the MV condition showed less satisfactory results. The new MV condition obtained in the present investigation can achieve 45% lower vibration level than the baseline uncontrolled condition. The optimum HHC input results lead to 3/rev harmonic input having $0.8^{\circ}$ amplitude and $350^{\circ}$ phase angle. About 5% reduction in the required power is possible but accompanies with the increase of vibration level.