• Title/Summary/Keyword: 성능한계

Search Result 2,608, Processing Time 0.024 seconds

A Study on Multi-Object Data Split Technique for Deep Learning Model Efficiency (딥러닝 효율화를 위한 다중 객체 데이터 분할 학습 기법)

  • Jong-Ho Na;Jun-Ho Gong;Hyu-Soung Shin;Il-Dong Yun
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.218-230
    • /
    • 2024
  • Recently, many studies have been conducted for safety management in construction sites by incorporating computer vision. Anchor box parameters are used in state-of-the-art deep learning-based object detection and segmentation, and the optimized parameters are critical in the training process to ensure consistent accuracy. Those parameters are generally tuned by fixing the shape and size by the user's heuristic method, and a single parameter controls the training rate in the model. However, the anchor box parameters are sensitive depending on the type of object and the size of the object, and as the number of training data increases. There is a limit to reflecting all the characteristics of the training data with a single parameter. Therefore, this paper suggests a method of applying multiple parameters optimized through data split to solve the above-mentioned problem. Criteria for efficiently segmenting integrated training data according to object size, number of objects, and shape of objects were established, and the effectiveness of the proposed data split method was verified through a comparative study of conventional scheme and proposed methods.

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.

A Basic Study on User Experience Evaluation Based on User Experience Hierarchy Using ChatGPT 4.0 (챗지피티 4.0을 활용한 사용자 경험 계층 기반 사용자 경험 평가에 관한 기초적 연구)

  • Soomin Han;Jae Wan Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.493-498
    • /
    • 2024
  • With the rapid advancement of generative artificial intelligence technology, there is growing interest in how to utilize it in practical applications. Additionally, the importance of prompt engineering to generate results that meet user demands is being newly highlighted. Exploring the new possibilities of generative AI can hold significant value. This study aims to utilize ChatGPT 4.0, a leading generative AI, to propose an effective method for evaluating user experience through the analysis of online customer review data. The user experience evaluation method was based on the six-layer elements of user experience: 'functionality', 'reliability', 'usability', 'convenience', 'emotion', and 'significance'. For this study, a literature review was conducted to enhance the understanding of prompt engineering and to grasp the clear concept of the user experience hierarchy. Based on this, prompts were crafted, and experiments for the user experience evaluation method were carried out using the analysis of collected online customer review data. In this study, we reveal that when provided with accurate definitions and descriptions of the classification processes for user experience factors, ChatGPT demonstrated excellent performance in evaluating user experience. However, it was also found that due to time constraints, there were limitations in analyzing large volumes of data. By introducing and proposing a method to utilize ChatGPT 4.0 for user experience evaluation, we expect to contribute to the advancement of the UX field.

Development of deep learning algorithm for classification of disc cutter wear condition based on real-time measurement data (실시간 측정데이터 기반의 디스크커터 마모상태 판별 딥러닝 알고리즘 개발)

  • Ji Yun Lee;Byung Chul Yeo;Ho Young Jeong;Jung Joo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • The power cable tunnels which are part of the underground transmission line project, are constructed using the shield TBM method. The disc cutter among the shield TBM components plays an important role in breaking rock mass. Efficient tunnel construction is possible only when appropriate replacement occurs as the wear limit is reached or damage such as uneven wear occurs. A study was conducted to determine the wear conditions of disc cutter using a deep learning algorithm based on real-time measurement data of wear and rotation speed. Based on the results of full-scaled tunnelling tests, it was confirmed that measurement data was obtained differently depending on the wear conditions of disc cutter. Using real-time measurement data, an algorithm was developed to determine disc cutter wear characteristics based on a convolutional neural network model. Distributional patterns of data can be learned through CNN filters, and the performance of the model that can classify uniform wear and uneven wear through these pattern features.

3DentAI: U-Nets for 3D Oral Structure Reconstruction from Panoramic X-rays (3DentAI: 파노라마 X-ray로부터 3차원 구강구조 복원을 위한 U-Nets)

  • Anusree P.Sunilkumar;Seong Yong Moon;Wonsang You
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.326-334
    • /
    • 2024
  • Extra-oral imaging techniques such as Panoramic X-rays (PXs) and Cone Beam Computed Tomography (CBCT) are the most preferred imaging modalities in dental clinics owing to its patient convenience during imaging as well as their ability to visualize entire teeth information. PXs are preferred for routine clinical treatments and CBCTs for complex surgeries and implant treatments. However, PXs are limited by the lack of third dimensional spatial information whereas CBCTs inflict high radiation exposure to patient. When a PX is already available, it is beneficial to reconstruct the 3D oral structure from the PX to avoid further expenses and radiation dose. In this paper, we propose 3DentAI - an U-Net based deep learning framework for 3D reconstruction of oral structure from a PX image. Our framework consists of three module - a reconstruction module based on attention U-Net for estimating depth from a PX image, a realignment module for aligning the predicted flattened volume to the shape of jaw using a predefined focal trough and ray data, and lastly a refinement module based on 3D U-Net for interpolating the missing information to obtain a smooth representation of oral cavity. Synthetic PXs obtained from CBCT by ray tracing and rendering were used to train the networks without the need of paired PX and CBCT datasets. Our method, trained and tested on a diverse datasets of 600 patients, achieved superior performance to GAN-based models even with low computational complexity.

Effect of Pot Bearing Aging on the Seismic Response of a Three-span Continuous Girder Bridge (3경간 연속 거더교의 지진응답에 대한 포트받침 노후화의 영향)

  • Ju Hyeon Jo;Dong Ho Kim;Jun Won Kang;Hyejin Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.251-258
    • /
    • 2024
  • This study investigated the effect of bearing aging on the seismic response of a three-span continuous concrete girder bridge with pot bearings installed. The pot bearings were modeled as elastic springs in the longitudinal, transverse, and vertical directions of the bridge to reflect the stiffness of fixed and movable supports. The effect of bearing aging on the seismic response of the bridge was examined by considering two factors: a decrease in the horizontal stiffness of the fixed bearings and an increase in the horizontal stiffness of the movable bearings. The finite element model of the three-span continuous girder bridge was validated by comparing its numerical natural frequencies with the designed natural frequencies. Using artificial ground motions that conform to the design response spectrum specified by the KDS bridge seismic design code, the seismic responses of the bridge's girders and bearings were calculated, considering the bearing stiffness variation due to aging. The results of a numerical analysis revealed that a decrease in the horizontal stiffness of the fixed bearings led to an increase in the absolute maximum relative displacement of the bearings during an earthquake. This increases the risk of the mortar block that supports the bearing cracking and the anchor bolt breaking. However, an increase in the horizontal stiffness of the movable bearings due to aging decreased the absolute maximum shear on the fixed bearings. Despite the shear reduction in the fixed bearings, the aging of the pot bearings change could cause additional tensile bending stress in the girder section above the free bearings, which could lead to unexpected structural damage to the continuous bridge during an earthquake.

Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction (팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링)

  • Sungho Bae;Myungsun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2024
  • This study develops a deep learning-based methodology for predicting Crude Palm Oil (CPO) prices. Palm oil is an essential resource across various industries due to its yield and economic efficiency, leading to increased industrial interest in its price volatility. While numerous studies have been conducted on palm oil price prediction, most rely on time series forecasting, which has inherent accuracy limitations. To address the main limitation of traditional methods-the absence of stationarity-this research introduces a novel model that uses the ratio of future prices to current prices as the dependent variable. This approach, inspired by return modeling in stock price predictions, demonstrates superior performance over simple price prediction. Additionally, the methodology incorporates the consideration of lag values of independent variables, a critical factor in multivariate time series forecasting, to eliminate unnecessary noise and enhance the stability of the prediction model. This research not only significantly improves the accuracy of palm oil price prediction but also offers an applicable approach for other economic forecasting issues where time series data is crucial, providing substantial value to the industry.

Performance Test of Portable Hand-Held HPGe Detector Prototype for Safeguard Inspection (안전조치 사찰을 위한 휴대형 HPGe 검출기 시제품 성능평가 실험)

  • Kwak, Sung-Woo;Ahn, Gil Hoon;Park, Iljin;Ham, Young Soo;Dreyer, Jonathan
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • IAEA has employed various types of radiation detectors - HPGe, NaI, CZT - for accountancy of nuclear material. Among them, HPGe has been mainly used in verification activities required for high accuracy. Due to its essential cooling component(a liquid-nitrogen cooling or a mechanical cooling system), it is large and heavy and needs long cooling time before use. New hand-held portable HPGe has been developed to address such problems. This paper deals with results of performance evaluation test of the new hand-held portable HPGe prototype which was used during IAEA's inspection activities. Radioactive spectra obtained with the new portable HPGe showed different characteristics depending on types and enrichments of nuclear materials inspected. Also, Gamma-rays from daughter radioisotopes in the decay series of $^{235}U$ and $^{238}U$ and characteristic x-rays from uranium were able to be remarkably separated from other peaks in the spectra. A relative error of enrichment measured by the new portable HPGe was in the range of 9 to 27%. The enrichment measurement results didn't meet partially requirement of IAEA because of a small size of a radiation sensing material. This problem might be solved through a further study. This paper discusses how to determine enrichment of nuclear material as well as how to apply the new hand-held portable HPGe to safeguard inspection. There have been few papers to deal with IAEA inspection activity in Korea to verify accountancy of nuclear material in national nuclear facilities. This paper would contribute to analyzing results of safeguards inspection. Also, it is expected that things discussed about further improvement of a radiation detector would make contribution to development of a radiation detector in the related field.

Effectiveness Analysis and Application of Phosphorescent Pavement Markings for Improving Visibility (축광노면표시 시인성 개선에 따른 경제성 분석 및 적용방안)

  • Yi, Yongju;Lee, Kyujin;Kim, Sangtae;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.815-825
    • /
    • 2017
  • Visibility of lane marking is impaired at night or in the rain, which thereby threatens traffic safety. Recently, various studies and technologies have been developed to improve lane marking visibility, such as the extension of lane marking life expectancy (up to 1.5 times), improvement of lane marking equipment productivity, improvement of lane marking visibility by applying phosphorescent material mixed paint. Cost-benefit analysis was performed with considering various benefit items that can be expected. About 45% of traffic accidents would be prevented by improving lane marking visibility. Additionally, accident reduction benefit and traffic congestion reduction benefit were calculated as much as 246 billion KRW per year and 12 billion KRW per year, respectively, by reducing repaint cycle due to enhanced durability. 45 billion KRW per year is expected to reduced with improved lane detection performance of autonomous vehicle. Meanwhile, total increased cost when introducing phosphorescent material mixed paint to 91,195km of nationwide road is identified as 1922 billion KRW per year. However, economic feasibility could not be secured with 0.16 of cost-benefit ratio when applied to the road network as a whole. In case of "Accident Hot Spot" analyzing section window (400m), one or more fatality or two or more injured (one or more injured in case of less than 2 lanes per direction) per year were caused by pavement marking related accident, economic feasibility was secured. In detail, 3.91 of cost-benefit ratio is estimated with comparison of the installation cost for 5,697 of accident hot spot and accident reduction benefit. Some limitations and future research agenda have also been discussed.

Video Camera Characterization with White Balance (기준 백색 선택에 따른 비디오 카메라의 전달 특성)

  • 김은수;박종선;장수욱;한찬호;송규익
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.23-34
    • /
    • 2004
  • Video camera can be a useful tool to capture images for use in colorimeter. However the RGB signals generated by different video camera are not equal for the same scene. The video camera for use in colorimeter is characterized based on the CIE standard colorimetric observer. One method of deriving a colorimetric characterization matrix between camera RGB output signals and CIE XYZ tristimulus values is least squares polynomial modeling. However it needs tedious experiments to obtain camera transfer matrix under various white balance point for the same camera. In this paper, a new method to obtain camera transfer matrix under different white balance by using 3${\times}$3 camera transfer matrix under a certain white balance point is proposed. According to the proposed method camera transfer matrix under any other white balance could be obtained by using colorimetric coordinates of phosphor derived from 3${\times}$3 linear transfer matrix under the certain white balance point. In experimental results, it is demonstrated that proposed method allow 3${\times}$3 linear transfer matrix under any other white balance having a reasonable degree of accuracy compared with the transfer matrix obtained by experiments.