이 논문은 ScanSAR 영상화에 대한 새로운 아이디어를 소개한다. 버스트(Burst) 모드로 신호를 획득하는 ScanSAR의 전통적인 영상화는 버스트 간 영상을 연결하는 Azimuth stitching이 필요하여, 이 과정은 방사왜곡 및 위상왜곡을 유발한다. 전통적인 SPECAN 방법 대신 이 논문에서는 시간영역 교차상관을 이용하여 Azimuth stitching 과정 없이 영상화가 가능한 새로운 방법을 소개한다. 이 방법의 핵심 아이디어는 기준함수 밴드폭을 적절히 확장하여 시간영역 교차상관을 수행하면 Azimuth stitching 없이도 영상화가 가능하다는 점이다. 이 방법을 실제 위성 원시신호에 적용하여 영상 전 구간에서 영상품질과 방사왜곡 관점에서 우수한 성능을 검증하였다. 버스트 모드를 기반으로 하는 ScanSAR는 영상품질(3 dB 해상도, peak-to-sidelobe ratio (PSLR), 압축률, Speckle 잡음 등)은 모든 품질지표에서 도플러 주파수 전 영역 신호를 이용하는 Stripmap에 비해 낮을 수밖에 없다. 그러나, 각 활용분야 및 기술에 따라 선정된 특정 영상 품질지표 만을 개선할 수 있는 방법은 다양하다. 따라서 ScanSAR 영상화는 모든 활용분야에 획일적인 방법에 의한 영상화보다는, 각 활용에 따라 요구되는 품질지표 우선순위에 따라 최적화할 수 있는 영상화 방법을 적용하는 차별화 전략이 요구된다.
항공기가 빙점 이하의 습도가 높은 구름대를 지날 때 액적이 항공기와 충돌하면 날개, 동체 등 항공기 구성품에 결빙이 발생한다. 특히 항공기의 날개에 결빙이 증식되면 공력 성능의 저하와 비행 안정성의 감소 등의 치명적인 안전 문제를 초래할 수 있다. 본 연구에서는 항공기 날개에 적용되는 고양력 장치인 다중 익형의 결빙 증식량이 최소가 되도록 형상 최적설계를 수행하였다. 3차원 Reynolds-Averaged Navier-Stokes 지배 방정식을 이용하여 공력해석을 수행하였고, 다물리 전산해석을 통해 결빙의 형상 및 증식량을 예측하였다. 최적설계의 목적함수는 결빙 증식량 최소화로 설정하였고, 설계변수는 Slat과 Flap의 전개 각도와 위치를 정의하는 형상 변수 6개를 선정하였다. 설계 과정에서 목적함수의 평가는 크리깅 근사모델을 사용하여 대체하였고 유전자 알고리즘을 적용하여 최적 형상을 도출하였다. 최적화를 수행한 결과, Slat과 Flap에 최적의 전개 각도와 위치를 적용하였을 때 결빙 증식량이 약 8% 감소하였다.
현대에는 급속한 산업화와 인구 증가로 인해 도시들이 더욱 복잡해지고 있다. 특히 도심은 택지개발, 재건축, 철거 등으로 인해 빠르게 변화하는 지역에 해당한다. 따라서 자율주행에 필요한 정밀도로지도와 같은 다양한 목적을 위해 빠른 정보 갱신이 필요하다. 우리나라의 경우 기존 지도 제작 과정을 통해 지도를 제작하면 정확한 공간정보를 생성할 수 있으나 대상 지역이 넓은 경우 시간과 비용이 많이 든다는 한계가 있다. 지도 요소 중 하나인 도로는 인류 문명을 위한 많은 다양한 자원을 제공하는 중추이자 필수적인 수단에 해당한다. 따라서 도로 정보를 정확하고 신속하게 갱신하는 것이 중요하다. 이 목표를 달성하기 위해 본 연구는 Semantic Segmentation 알고리즘인 LinkNet, D-LinkNet 및 NL-LinkNet을 사용하여 광주광역시 도시철도 2호선 공사 현장을 촬영한 드론 정사영상에서 도로를 추출한 다음 성능이 가장 높은 모델에 하이퍼 파라미터 최적화를 적용하였다. 그 결과, 사전 훈련된 ResNet-34를 Encoder로 사용한 LinkNet 모델이 85.125 mIoU를 달성했다. 향후 연구 방향으로 최신 Semantic Segmentation 알고리즘 또는 준지도 학습 기반 Semantic Segmentation 기법을 사용하는 연구의 결과와의 비교 분석이 수행될 것이다. 본 연구의 결과는 기존 지도 갱신 프로세스의 속도를 개선하는 데 도움을 줄 수 있을 것으로 예상된다.
현행 수질모니터링은 현장에서 수질 시료를 채취하여 실험실로 이동 후 분석하는 방법에 의존하고 있다. 이러한 분석기법은 노동집약적이며 경제적으로도 많은 부담이 주어진다. 그러나 현행 모니터링시스템을 개선하기 위하여 보다 짧은 시료채취주기 또는 시료채취지점 확대 등과 같은 방법을 동원하는 것은 인력 및 경제적 측면을 고려할 때 현실적으로 거의 불가능에 가깝다. 따라서 인력 및 경제적인 측면에서 큰 부담없이 현행 수질모니터링기법을 보완할 수 있는 방안이 고려되어야 한다. 본 연구에서는 모델링 기법을 도입하여 현행 수질모니터링 시스템을 보완하고자 하였고 인공신경망모델을 적용하였다. 인공신경망은 사람의 뇌에서 일어나는 작용을 모방한 기법으로 인지할 수 있는 현상을 뇌가 종합적으로 판단하는 과정을 컴퓨터에서 구현하는 방식인데 수질 예측을 위해 이러한 인공신경망기법을 도입 하였다. 본 연구에서는 수질 인자 중 Total coliform 을 타겟으로 하여 하천말단부에서 이들 인자를 예측할 수 있는지에 중점을 두고 연구를 수행하였다. 연구결과 제한된 입력인자를 이용하여 모델을 검보정하였음에도 불구하고 좋은 예측 성능을 보였다. 따라서 본 연구에서 사용된 기법을 근거로 수질상태를 사전에 예측함으로 수계 관리를 수행한다면 현 수질모니터링 시스템 보완에 큰 도움일 될 것으로 기대된다.
본 연구는 GIS를 통해 토양정보를 수집하고 가공하여 농산물 생산량을 예측하는 모델을 제안한다. 농산물 생산량 예측 딥러닝 알고리즘은 공개된 CNN-RNN 농산물 생산량 예측 모델 구조를 변경하여 국내 농산물 자료 환경에 적합하도록 새롭게 구축하였다. 기존모델은 두 가지 특징을 가지고 있는데 첫 번째는 농산물의 생산량을 해당 필지값이 아닌 당해 평균값으로 대체한다는 것이고 두 번째는 예측하는 연도의 데이터까지 학습한다는 것이다. 새로운 모델은 해당 필지의 값을 그대로 사용하여 데이터의 정확성을 확보하고 예측하고자 하는 연도 이전의 데이터만 가지고 학습할 수 있도록 네트워크 구조를 개선하였다. 제안한 CNN-RNN 모델은 1980년부터 2020년까지의 기상정보, 토양정보, 토양적성도, 생산량 데이터를 학습하여 김장용 가을배추의 지역별 단위면적당 생산량을 예측한다. 2018년부터 2021년까지 4개 연도별 자료에 대하여 계산하고 생산량을 예측한 결과, 테스트 데이터셋에 대한 오차백분율이 약 10% 내외로 실제값과 비교하여 정확도 높은 생산량 예측이 가능했고, 특히 전체 생산량 비중이 큰 지역에서의 생산량은 비교적 근접하게 예측하는 것으로 분석되었다. 또한 제안모델과 기존모델은 모두 학습자료 연도 수가 증가할수록 점점 오차가 작아지므로 학습데이터가 많아질수록 범용 성능은 향상되는 결과를 나타낸다.
국내에서 사용되는 천연가스가 저열량화 되면서 발생할 수 있는 문제점에 대응하기 위해서는 국내 산업용 가스기기에 미칠 수 있는 문제점을 사전에 파악하고, 이를 기반으로 에너지의 효율적인 사용을 위한 대응방안이 선행되어야 한다. 본 연구에서는 EURO-6 규제를 대응하는 희박연소방식의 천연가스 엔진을 이용할 경우, 저열량 가스의 도입으로 인한 엔진 출력성능과 효율의 저하 문제를 해결하기 위해, 실험을 토대로 한 구체적인 제어방안과 결과를 제시하고자 하였다. 전부하 운전조건인 1,400 rpm의 엔진 회전수에서 스로틀이 전부 개방된 전부하 조건과 정격운전조건의 엔진회전수인 2,100 rpm, 450 Nm의 토크 조건에서 점화시기로 대표되는 제어변수에 의한 개선효과 확인을 위해, 각 가스연료에 대해서 점화시기를 변경하여 열효율 및 배출가스특성을 파악하고 최적화하였다. 전부하조건에서 토크를 기준으로 가장 낮은 값을 보이는 순수메탄의 경우 기준 조건에서 약 2 CAD 정도 점화시기를 진각하면 NOx 배출의 큰 증가 없이 토크를 보상할 수 있다.
기존의 인공위성은 다기능·높은 성능을 가진 대형위성을 국가 단위에서 운용하는 것이 일반적이었으나 최근의 전기·전자 및 광학 기술의 경량 소형화 발전에 따라 점차 소형위성이 주목받고 있다. 크기와 무게가 감소됨에 따라 적은 비용으로 개발 및 발사가 가능하여 위성 개발에 진입장벽이 낮아지고 있으나, 인공위성의 전력공급에 필수적인 태양전지 패널의 경우 태양광에 효율적으로 노출되기 위해 넓은 표면적이 필요하여 소형화 및 경량화가 제한적이다. 우주용 태양전지는 우주선과 태양열, 온도와 같은 다양한 우주환경을 고려하여 제작되어야하고, 부피를 최적화하기 위해 전개 매커니즘을 적용하며 경량화 및 고효율화를 위하여 태양전지 셀의 구조적 재료적인 연구개발이 필요하다. 현재 태양전지 패널로 개발되어 운용되고 있는 제품들은 고효율화를 위하여 주로 InGaP/GaAs/Ge 소재의 3중구조를 적용하고 있다. 최근에는 초고효율 다층구조 태양전지를 위하여 4중접합 이상의 구조가 연구되고 있으며, 나아가 소재적으로 경량화에 유리한 유연박막 태양전지, 유기 및 유무기 하이브리드 태양전지 등이 차세대 소형위성용 태양전지로 주목받고 있다.
기존 운항선박에 적용되어 있는 알람 모니터링 기술은 온도, 압력 등의 데이터 항목을 AMS(Alarm Monitoring System)으로 관리하고 해당 센싱 데이터가 정상 수준 범위를 초과할 경우만 선원에게 알람을 제공한다. 또한 기존 선박의 정비는 PMS(Planned Maintenance System)를 따른다. 이는 장비로부터 측정된 센싱 데이터가 설정범위 이상으로 측정되어 이에 따른 알람을 통해 정비하거나, 대상 기기의 고장 유무에 관계없이 일정 시간 사용 후 해당 부품을 사전에 교체하는 방식으로 운영되고 있다. 하지만 선박 기관운영의 신뢰성과 운항 안전성을 확보하기 위해서는 실시간 상태 모니터링 데이터 기반의 사전적 진단 및 예측이 가능해야 한다. 그러기 위해서 실선 데이터를 종합적으로측정하여 데이터베이스화 하고 이를 선박의 보조기기와 배관의 상태기반 예지보전을 위한 상태 진단 모니터링 시스템을 구현하고자 한다. 특히 반응형 웹 기반으로 선박의 보조기기와 배관 상태 정보를 관리할 수 있도록 하였으며, 선내 개인용 컴퓨터(Personal Computer, PC)에서 보는 용도뿐만 아니라 스마트폰 등 다양한 모바일 기기의 접근 및 활용이 가능하도록 화면과 해상도에 맞춰 최적화된 상태 관리가 가능하도록 하여 업데이트 비용이 적게 들며, 관리 방법도 쉽다. 본 논문에서는 자율운항선박 핵심 기술인 상태기반정비(Condition Based Management, CBM) 기술력을 확보하기 위해 선박의 보조기기 중 펌프와 청정기, 그리고 배관 중 해수 및 스팀 배관의 상태 진단 모니터링을 통해 이상 현상을 파악하고, 이를 통해 융합 분석할 수 있도록 선박 보조기기 및 배관의 성능 진단 및 고장 예측에 활용하여 예방정비 의사결정을 지원하고자 한다.
탄소섬유의 성능은 탄소 섬유 강화 플라스틱(CFRP)과 같은 고품질 고분자 복합재료에 매우 중요하다. 이를 위해 탄소섬유 물성에 큰 영향을 주는 전구체 섬유의 기계적, 물리적, 구조적 특성을 개선할 수 있는 최적화된 방사공정과 이를 위한 적합한 전구체 공중합 고분자를 사용하는 것은 필수적이다. 본 연구에서는 메타크릴산(MAA)의 함량과 주입시간, 2,2'-아조비스(2-메틸프로피오니트릴) (AIBN)의 농도를 합성공정 변수로 설정하였으며, 용액 중합법(solution polymerization)에 의해 Poly(AN-co-MAA)가 합성되었다. 305,138 g/mol의 분자량과 4.2%의 MAA 비율을 가지는 Poly(AN-co-MAA)를 N,N-디메틸포름아미드(DMF)에 16.0 wt% 농도로 용해시킨 후 기격습식방사법(dry-jet-wet spinning)으로 전구체 섬유를 제조하였다. 섬유의 인장강도는 ~1.06 GPa, 인장탄성률은 ~22.01 GPa였으며, 섬유에서의 공극 및 구조적 결함은 관찰되지 않았다.
사물인터넷 및 빅데이터 등 디지털 데이터의 범람으로, 다수 사용자로부터 방대한 데이터를 처리 및 보관하는 클라우드 서비스 제공자는 효율적 데이터 관리를 위한 데이터 중복제거를 적용할 수 있다. 중앙 클라우드 서버로의 네트워크 혼잡 및 연산 효율성 저하 등의 문제를 개선하기 위한 클라우드의 확장으로 엣지 컴퓨팅 개념이 도입되면서 사용자 경험을 개선할 수 있으나, 전적으로 신뢰할 수 없는 새로운 엣지 디바이스의 추가로 인하여 프라이버시 보존 데이터 중복제거를 위한 암호학적 연산 복잡도의 증가를 야기할 수 있다. 제안 기법에서는 신뢰실행환경을 활용함으로써 사용자-엣지-클라우드 간 최적화된 통신 구조에서 프라이버시 보존 데이터 중복제거의 효율성 개선 방안을 제시한다. 사용자와 클라우드 사이에서의 비밀정보 공유를 통하여 엣지 디바이스에서의 연산 복잡도를 최소화하고, 클라우드 서비스 제공자의 효율적 암호화 알고리즘 사용을 가능하게 한다. 또한, 사용자는 엣지 디바이스에 데이터를 오프로딩함으로써 데이터 중복제거와 독립적인 활동을 가능하게 하여 사용자 경험을 개선한다. 실험을 통하여 제안 기법이 데이터 프라이버시 보존 중복제거 과정에서 엣지-클라우드 통신 효율성 향상, 엣지 연산 효율성 향상 등 성능 개선 효과가 있음을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.