• Title/Summary/Keyword: 성능에 기초한 내진 설계

Search Result 113, Processing Time 0.026 seconds

Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer (지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • Site soil condition affects significantly on the seismic response of a structure and is a critical factor for the performance based seismic design of a structure. In this paper, the effects of nonlinear soil properties on the elastic response spectra of a structure including the nonlinearity of a soil due to the earthquake excitation is investigated using one step finite element approach for the entire soil structure system and approximate linear iterative procedure to simulate the nonlinear soil behavior with the Ramberg-Osgood soil model. Studies were carried out for a linear SDOF system of a variable period with and without a pile group for the 1940 CI Centro earthquake recorded on ground rather than rock. The study results showed clearly that the effect of the nonlinear behavior of soft soil is very important on the elastic seismic response of a structure suggesting the necessity of the performance based seismic design.

Design of Boundary Confinement of Structural Walls (구조벽의 단부 횡보강 설계)

  • Kang, Su-Min;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.877-887
    • /
    • 2003
  • For a performance-based design of structural walls, it is necessary to develop a rational design method for determining the length and detail of boundary confinement so as to satisfy the given ductility demand. In the present study, the curvature capacity of a structural wall with boundary confinement was estimated considering the effects of various design parameters. The curvature demand of the plastic hinge corresponding to the given design displacement was also determined. By equalizing the curvature capacity to the demand, a design method for determining the length of boundary confinement, was developed. According to the design method, the length of boundary confinement increases as axial compressive load and design displacement increase, and as concrete strength, wall thickness, amount of lateral reinforcement and aspect ratio decrease. A study was performed on details for effective lateral confinement of walls with rectangular cross-section. Based on the findings, design guidelines on spacings of ties and cross-ties were proposed.

Direct Inelastic Earthquake Design Using Secant Stiffness (할선강성을 이용한 직접비탄성내진설계)

  • 박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.17-27
    • /
    • 2004
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer. such as ductility limit on each member, the design concept of strong column - weak beam, and etc. In addition, through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy. As the result. economical and safe design can be achieved.

Evaluation of Nonlinear Seismic Performance Using Equivalent Responses of Multistory Building Structures (대표응답을 이용한 건축구조물의 비선형 지진응답 분석 및 내진성능평가)

  • 이동근;최원호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.65-76
    • /
    • 2001
  • Determination of ductility demand and prediction of nonlinear seismic responses of a structure under the earthquake ground motions have become a very important subject for evaluation of seismic performance in the performance based seismic design. In this study, the system ductility demand and nonlinear seismic responses of the steel moment framed structures by the nonlinear time history analysis are estimated and compared with those obtained from the capacity spectrum method suggested in ATC-40 and proposed method that is an improvement on the capacity spectrum method using the equivalent responses derived directly from a multi degree of freedom system. the adequacy and validity of the proposed method is verified by comparing the results evaluated by the method proposed in this study and the results obtained from method suggested in ATC-40 to the nonlinear seismic responses of the example structures from the nonlinear time history analysis.

  • PDF

Performance Based Design of Friction Dampers for Seismically Excited Structures (지진하중을 받는 구조물의 성능에 기초한 마찰감쇠기 설계)

  • 민경원;김형섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.17-24
    • /
    • 2003
  • The main objective of this paper is to evaluate the control performance of a coulomb friction damper(CFD) for controlling the inelastic behavior of seismically excited structures, The seismic performances of various buildings are evaluated using capacity spectrum method(CSM), and the additional dampings are calculated If the evaluated performance levels of the buildings are below the target level. Maximum friction force of the CFD to achieve additional damping is provided using the concept of equivalent viscous damping, Numerical simulations for single degree of freedom(SDOF) systems with various structural periods and post yield stiffness ratios demonstrate the effectiveness of the proposed procedure.

Evaluation of the Seismic Safely of Concrete Gravity Dams (콘크리트 중력식 댐의 내진 안전성 평가)

  • 소진호;정영수;김용곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • Recently, the seismic safety evaluation of concrete gravity dams is raised due to the damage or the failure of dams occurred by the 1995 Kobe earthquake, the 1999 Taiwan earthquake, etc. Failre of dam may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about 'earthquake-resistance' or 'seismic safety'of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic safety of concrete gravity dams on the basis of the evaluation method of seismic safety of concrete gravity dams in U.S.A., Japan, Canada, and etc. level 1 is a preliminary evaluation which is for purpose f screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. Finally, level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dam on operation showed good seismic performance under the designed artificial earthquake.

A Study on the Seismic Performance Design of Waterproofing Materials Applied to Single-side Walls of Underground Structures (지하 구조물 합벽구간에 적용되는 방수재료의 내진성능설계를 위한 기초 자료조사 연구)

  • Kim, Soo Yeon;Na, Mi Ok;Lee, Sung Jin;Kim, Meong Ji;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.220-221
    • /
    • 2019
  • At a time when the recent earthquake in Pohang, Korea requires the need for seismic performance design not only for concrete structures but also for construction materials used in construction structures, the possibility of applying the seismic performance design of waterproof materials constructed in the form of direct or partial adhesion to concrete structures in the underground Single-side walls section was confirmed.

  • PDF

Analysis of Seismic Response Coefficient by Fundamental Period using Geographic Information System (GIS를 이용한 고유주기에 따른 지진응답계수 분석)

  • Seo, Eun-Su;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Response of buildings under seismic load is different according to fundamental period. It is provided in Korean Building Code(KBC2009) seismic response coefficient by fundamental period for seismic design of buildings. Recently, many researchers have studied on fundamental period and seismic response coefficient. However, studies on seismic design using Geographic Information System(GIS) are not sufficient. Therefore, this paper has analyzed on seismic response coefficient of buildings using ArcGIS. This paper can be evaluated efficiently for seismic analysis of structures. And this study will be used as basics of a reasonable seismic design using Geographic Information Systems(GIS).

Horizontal Elastic Response of a Structure to Bedrock Earthquake with the Nonlinear Soil Layer (비선형 지반을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동)

  • 김용석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.83-92
    • /
    • 2002
  • 지반조건은 구조물의 지진거동에 매우 큰 영향을 미치고 성능에 기준한 내진설계에 중요한 요소이다. 이 논문에서는 지진에 의한 지반의 비선형성을 포함한 지반의 비선형성이 구조물의 탄성지진거동에 미치는 영향을 지반 구조물 일괄해석 유한요소법과 지반의 비선형성을 구현하기 위해 Ramberg-Osgood 토질모델에 대한 근사 선형 반복해석 법으로 연구하였다. 연구는 말뚝기초의 유무를 고려한 주기가 변하는 선형 단자유도계에 지표에서 기록된 1940년 El Centro 지진을 적용하여 수행하였다. 연구결과에 의하면 연약지반의 비선형 특성 영향이 구조물의 탄성 지진거동에 매우 중요하고, 성능에 기준한 지반의 비선형성을 고려한 구조물의 내진설계가 필요하다는 것을 잘 보여주고 있다.

  • PDF

Nonlinear Finite Element Analysis of Circular Hollow Reinforced Concrete Columns Based on Design Variables (설계변수에 따른 중공원형 철근콘크리트 교각의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Lee, Seung-Jin;Lee, Byung-Ju;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The seismic design of solid reinforced concrete bridge columns has been committed to, based on accumulated research and design specifications. The rational confinement model and seismic performance evaluation, however, are insufficient because of the lack of domestic and foreign design specifications about the experimental and analytical difficulties in the case of circular hollow reinforced concrete columns. In this paper, the seismic behavior of circular hollow reinforced concrete columns and its dependence on design variables are understood and explained. These research results can be used to derive the rational and economical design specifications for circular hollow sectional columns based on the result from the nonlinear analysis program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology).