• Title/Summary/Keyword: 성능에 기초한 내진 설계

Search Result 113, Processing Time 0.023 seconds

Anti-Seismic Performance Evaluation of Circular Pier By Interval Reinforcement (보강간격에 따른 원형 기둥부재의 내진 성능 평가)

  • Jang, Il-Young;Kim, Seong-Kyum;Park, Jun-Young;Yang, Jae-Yeol
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.165-165
    • /
    • 2011
  • 내진 설계규정이 적용되기 이전에 시공되어 사용 중인 교량의 경우 지진 발생시 교각의 파괴 또는 구조적 피해는 교량 전체 시스템의 붕괴를 초래하므로 지진하중에 대하여 피해를 최소화해야 한다. 이를 위해 내진설계규정이 적용되기 이전의 교량 또는 지진취약지역으로 분류된 곳의 교량, 사회적 중요도가 높은 교량에 대해 교각의 내진성능보강을 실시하고 있다. 2007년 말 국토해양부가 관리하고 있는 11,940개 교량 중 지진 발생시 피해가 우려되는 1,342개(일반국도 682개, 고속국도 600개) 교량에 대해 2006년부터 내진보강이 착수되었고 2009년에는 확대 추진하여 일반국도 80개교, 고속국도 100개교에 대한 보강을 실시하였다. 이와 같이 확대 추진되고 있는 정책에 반해, 내진보강 기술 및 제품이 부족하고 새로운 내진보강재 개발이 불가피해지고 있는 것이 현실이다. 소성영역에서의 횡방향 철근은 지진 시 종방향 철근의 좌굴과 콘크리트의 압축강도저하를 방지하며, 전단보강철근으로도 중요한 역할을 하여 교각의 전단강도를 증가시킨다. 그러나 이러한 횡방향 철근은 초기 설계에 의한 시공이 종료된 후 기존의 성능을 증가시키기 위하여 철근량을 증가하거나 단면의 변화를 주기에는 매우 어려운 일이다. 따라서 내진성능을 위한 단면력 증가를 위하여 다양한 재료의 보강재와 형식이 사용되고 있다. 본 연구에서는 원형교각 모델의 구조해석을 이용해 내진성능평가를 선행한 후 실험체를 제작, Helical Bar를 보강하여 준정적 실험을 통해 내진보강성능을 평가하였다. 압축설계강도 $f_{ck}=240kgf/cm^2$를 기준으로 교량등급 2등교인 일반적인 도로교의 1/4축소모형을 설계, 기초부는 $1,200{\times}600{\times}600$ (mm)으로 철근과 콘크리트로 구성하였으며, 기둥부는 직경 400mm, 높이 1,250mm 크기의 철근콘크리트 원형 교각 실험체를 제작하였다. 제작된 실험체는 총 3개로, 분류는 무보강 일반 실험체, Helical Bar 직경에 따른 분류, 보강간격에 따른 분류로 나누어진다.

  • PDF

A Fundamental Study of Performance Based Seismic Design on the Large Span Structures: The Characteristics of Elasto-Plastic Earthquake Responses of a Steel Frame with Membrane Roof (공간구조물의 성능기초 내진설계에 관한 기초연구: 강구조 골조막 구조의 탄소성 지진응답특성)

  • Nakazawa, Shoji;Cheong, Myung-Chae;Kato, Shi;Yoshino, Tatsuya;Oda, Kenshi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.35-44
    • /
    • 2007
  • The characteristics of elasto-plastic responses of a gymnasium building which is a steel braced frame with membrane roof is discussed as a basic research on the performance based seismic design of large span structures, in this paper. Under the strong earthquake motions, the formation of plastic hinges on braces attached by the bottom frame make reduce down the stresses and displacements of upper structures, and vertical acceleration of the membrane is tend to increase but maximum response of strain and corresponding stresses are tend to be reduced.

  • PDF

Evaluation of Seismic Performance of Steel Frame before and after Application of Seismic Isolator (면진 장치 적용 전, 후의 철골조의 내진 성능 평가)

  • 김대곤;이상훈;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1998
  • The laminated elastomeric bearing and the lead-rubber bearing were designed to isolate one bay-two story steel frame which is designed for only gravity load. The seismic performance is evaluated for the designed steel frame before and after application of these seismic isolators between the super structure and the foundation. These isolators can improve the seismic capacity of the steel frame. Especially, by inserting the lead plug into the center of the laminated elastomeric bearing, the initial stiffness of th bearing can be increased, thus rather large lateral displacement can be prevented under the frequent service lateral load. During the strong earthquake, yielding of the lead can increase the capacity of the energy dissipation.

  • PDF

Improvement of Seismic Performance of Existing Bridges using Isolation (지진격리장치를 이용한 기존 교량의 내진성능 향상)

  • 한경봉;김민지;박선규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The seismic performance evaluation and retrofit process are very important in old existing bridges. If the result is not appropriate. then a retrofit process are required. Among various retrofit methods, the seismic isolation is a very useful method. because it can be applied by replacing old bridge bearings. In this study, the effectiveness of seismic isolation is rationally verified. For this purpose, two seismic isolations used widely are selected and non-linear static and dynamic analyses are performed. The responses of existing bridges are compared with those of retrofited bridges by seismic isolation bridge for earthquake of target level. and seismic performances are evaluated.

The Evaluation of Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능 평가)

  • 정지만;장승필;인성빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.53-58
    • /
    • 2002
  • A recent development, a concrete-filled steel(CFS) pier is an alternative to a reinforced concrete bridge pier in an urban area, because of its fast construction and excellent ductility against earthquakes. The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution (적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가)

  • 이동근;최원호;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. Evaluation method of seismic performance based on the pushover analysis reflected in PBSE was developed by some researchers. For the evaluation of inelastic global and local seismic responses by pushover analysis exactly. lateral load distribution should be adjusted and reflected the dynamic characteristics of structural system and various seismic ground motions. And performance point should be determined based on the evaluation of reasonable deformation capacity of a building more exactly. An effective method based on the improved the adaptive lateral load distribution and the equivalent responses of a multistory building is proposed in this study to efficiently estimate the accurate inelastic seismic responses. The proposed method can be used to evaluate the seismic performance for the global inelastic behavior of a building and to accurately estimate its local inelastic seismic responses. In order to demonstrate the accuracy and validity of this method, inelastic seismic responses estimated by the proposed method are compared with those obtained from other analytical methods.

The Suggestion of Seismic Performance Values on Connections for Performance Based Design of Steel Structures (강구조 성능기반설계를 위한 접합부의 내진성능평가치 제안)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Lee, Jin-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.147-158
    • /
    • 2011
  • The purpose of this research was to analyze the connections of the seismic-performance values for domestic-performance-based designs. Basic research on the performance design method has been increasing of late, along with performance-based organization investigations. These investigations concern the performance level state of steel structure buildings. According to the performance limit state, seismic-performance values should be presented as appropriate steel structure engineering amounts. The first step, based on the full-scale steel structure experiments, involves researching on the making of a basic document. The moment-rotation angle relationship results of the experiment on the moment-frame connection were used to assort the functional and undamaged limits, which were assumed to be less than the yield moment. Moreover, the repairable and safety limits, which were assumed to exist between the yield and maximum moments, were assorted by investigating the accumulated plastic deformation ratio.

Seismic Performance Evaluation Procedure and Reinforcement Direction of Subway Lines 1~4 (지하철 1~4호선 내진성능 평가절차 및 보강방향)

  • Jang, Won-Rak;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.439-444
    • /
    • 2019
  • In this paper, the seismic performance evaluation of the subway lines 1~4 conducted from April 2010 to October 2013 for the existing structures that were not seismically designed based on the seismic design criteria of urban railways was studied. The detailed design of seismic reinforcement for the facilities requiring seismic reinforcement was summarized through the detailed design of the seismic reinforcement construction conducted from March to December 2018. As a result of the evaluation, 53.2km (total project cost of 322 billion won) of 141.5km of Lines 1~4 were considered to require seismic reinforcement, and finally, the company aims to secure a 100% earthquake-proof rate to withstand earthquake-scale 6.5 by 2020. This paper can be used as basic research data to evaluate and reinforce seismic performance of urban railways in the future.

Improved Distribution of Seismic Forces for Evaluation of Nonlinear Seismic Response of Building Structures (건축구조물의 비선형 지진응답 평가를 위한 개선된 지진하중 분배방법)

  • 이동근;최원호;안지희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.33-47
    • /
    • 2001
  • 성능에 기초한 내진설계에서는 구조물이 보유하고 있는 능력을 효과적으로 파악하기 위해서 비선형 정적 해석이 적용되고 있다. 그러나 비선형 정적해석은 고차모드에 대한 효과를 고려하지 못함으로써 고층구조물이나 비정형 구조물과 같은 경우에는 정확한 비선형 지진응답의 산정과 내진성능을 평가하는데 문제점을 가지고 있다. 본 연구에서는 건축구조물의 선형 및 비선형 지진응답 평가를 위하여 응답 스펙트럼해석을 통하여 얻어지는 층전단력으로부터 층하중을 산정하는 유사동적해석법이 적용되었다. 제안된 방법을 비선형 정적 해석에 적용하여 구조물의 비선형 자동응답을 비선형 시간이력해석의 결과와 비교하였다. 기존의 층분포하중에 의한 비선형 지진응답과 비교하였으며, 제안된 방법에 의한 지진 응답이 구조물의 비선형 거동특성을 가장 정확하게 표현하였다. 그러므로 본 연구에서 제안된 방법을 사용하여 비선형 정적 해석을 수행한다면 비교적 명확한 건축물의 비선형 거동특성과 내진성능을 평가할 수 있을 것으로 판단된다.

  • PDF

Shaking Table Test for Seismic Performance Evaluation of Non-Seismic Designed Wall-Type Apartment (내진설계 되지 않은 공동주택의 진동대 실험에 의한 내진성능 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.721-728
    • /
    • 2006
  • Earthquakes are reported thai building structures have been colossal damaged, but before 1988 designed structures which were not applicate seismic design code have no seismic performance. Especially, for the apartment structures were indicated that it have no resist wall element of earthquake before 1988 designed structures. We have to evaluate for seismic performance this structures, therefore it will be retrofitted for seismic index sufficient structures. We performed seismic performance evaluation for model structures by MIDAS which is general structure analysis software. In this study, it was performed shaking table test to evaluate model structure which is reinforcement concrete and 5 floors for seismic performance index. We made specimens by similar's law and tested shaking table test. In the shaking table test it is not performed prototype model test because of space and equipment condition. So we had made scale-down model for 1/5 by similar's law. That's why it needs for the evaluation of performance. However, it is not possible to do an experiment of prototype owing to the shortage of space and the limit of an experimental instrument in the shaking table test. Then, modeling and reducing the part of prototype do the experiment. In this experiment a shaking table test is done and seismic performance of model structures is evaluated by using similitude laws for scale down specimen. As a result it is proved that non-seismic design structures need to retrofit since seismic performance shows life safe grade in 0.12g of an earthquake.