본 논문에서는 KorBERT와 개체 인기정보(popularity)를 이용한 개체연결 기술을 소개한다. 멘션인식(mention detection)은 KorBERT를 이용한 토큰분류 문제로 학습하여 모델을 구성하였고, 개체 모호성해소(entity disambiguation)는 멘션 컨텍스트와 개체후보 컨텍스트 간의 의미적 연관성에 대한 KorBERT기반 이진분류 문제로 학습하여 모델을 구성하였다. 개체 인기정보는 위키피디아의 hyperlink, inlink, length 정보를 활용하였다. 멘션인식은 ETRI 개체명 인식기를 이용한 모델과 비교하였을 경우, ETRI 평가데이터에서는 F1 0.0312, 국립국어원 평가데이터에서는 F1 0.1106의 성능 개선이 있었다. 개체 모호성해소는 KorBERT 모델과 Popularity 모델을 혼용한 모델(hybrid)에서 가장 우수한 성능을 보였다. ETRI 평가데이터에서는 Hybrid 모델에서의 개체 모호성 해소의 성능이 Acc. 0.8911 이고, 국립국어원 평가데이터에서는 Acc. 0.793 이였다. 최종적으로 멘션인식 모델과 개체 모호성해소 모델을 통합한 개체연결 성능은 ETRI 평가데이터에서는 F1 0.7617 이고, 국립국어원 평가데이터에서는 F1 0.6784 였다.
문법 교정 모델은 입력된 텍스트에 존재하는 문법 오류를 탐지하여 이를 문법적으로 옳게 고치는 작업을 수행하며, 학습자에게 더 나은 학습 경험을 제공하기 위해 높은 정확도와 재현율을 필요로 한다. 이를 위해 최근 연구에서는 문단 단위 사전 학습을 완료한 모델을 맞춤법 교정 데이터셋으로 미세 조정하여 사용한다. 하지만 본 연구에서는 기존 사전 학습 방법이 문법 교정에 적합하지 않다고 판단하여 문단 단위 데이터셋을 문장 단위로 나눈 뒤 각 문장에 G2P 노이즈와 편집거리 기반 노이즈를 추가한 데이터셋을 제작하였다. 그리고 문단 단위 사전 학습한 모델에 해당 데이터셋으로 문장 단위 디노이징 사전 학습을 추가했고, 그 결과 성능이 향상되었다. 노이즈 없이 문장 단위로 분할된 데이터셋을 사용하여 디노이징 사전 학습한 모델을 통해 문장 단위 분할의 효과를 검증하고자 했고, 디노이징 사전 학습하지 않은 기존 모델보다 성능이 향상되는 것을 확인하였다. 또한 둘 중 하나의 노이즈만을 사용하여 디노이징 사전 학습한 두 모델의 성능이 큰 차이를 보이지 않는 것을 통해 인공적인 무작위 편집거리 노이즈만을 사용한 모델이 언어학적 지식이 필요한 G2P 노이즈만을 사용한 모델에 필적하는 성능을 보일 수 있다는 것을 확인할 수 있었다.
인터넷의 발전으로 수많은 이미지와 비디오를 손쉽게 이용할 수 있게 되었다. 이미지와 비디오 데이터의 양이 기하급수적으로 증가함에 따라, JPEG, HEVC, VVC 등 이미지와 비디오를 효율적으로 저장하기 위한 부호화 기술들이 등장했다. 최근에는 인공신경망을 활용한 학습 기반 모델이 발전함에 따라, 이를 활용한 이미지 및 비디오 압축 기술에 관한 연구가 빠르게 진행되고 있다. NNIC (Neural Network based Image Coding)는 이러한 학습 가능한 인공신경망 기반 이미지 부호화 기술을 의미한다. 본 논문에서는 NNIC 모델과 인공신경망 기반의 초해상화(Super Resolution) 모델을 합동훈련하여 기존 NNIC 모델보다 더 높은 성능을 보일 수 있는 방법을 제시한다. 먼저 NNIC 인코더(Encoder)에 이미지를 입력하기 전 다운 스케일링(Down Scaling)으로 쌍삼차보간법을 사용하여 이미지의 화소를 줄인 후 부호화(Encoding)한다. NNIC 디코더(Decoder)를 통해 부호화된 이미지를 복호화(Decoding)하고 업 스케일링으로 초해상화를 통해 복호화된 이미지를 원본 이미지로 복원한다. 이때 NNIC 모델과 초해상화 모델을 합동훈련한다. 결과적으로 낮은 비트량에서 더 높은 성능을 볼 수 있는 가능성을 보았다. 또한 합동훈련을 함으로써 전체 성능의 향상을 보아 학습 시간을 늘리고, 압축 잡음을 위한 초해상화 모델을 사용한다면 기존의 NNIC 보다 나은 성능을 보일 수 있는 가능성을 시사한다.
분산 공유메모리 시스템(DSM)의 성능 향상을 위해 일관성 모델의 측면에서 많은여구가 진행되었다. 분산 공유메모리 시스템의 성능을 저하시키는 가장 큰 요인은 거짓 공유 문제와 별도의 통신비용 문제를 들 수 있는데 , 동기화 연산에 의한 일관성 유지 방법, 흠-기반 접근방법 등의 보다 완화된 메모리 모델로서, 이러한 문제점을 해결하려는 연구가 진행되어 왔고, 어느 정도 타당한 결과를 보았다. 본 논문에서는 동기화 연산에 의한 일관성 모델을 기초로 동적 흠-기반 접근 방법을 제안하며, 이것은 흠에서의 이점 및 부하를 여러 프로세서에게 분산시켜 시스템 전반의 성능 향상을 가져온다.
본 논문에서는 실측 데이터를 기준으로 9가지의 다양한 모델을 제안한 JTC(Joint Technical Committee) 모델을 전송 채널 모델로 채택하여 채널의 PDP(Power Delay Profile)의 불규칙성 따른 OFDM (Orthogonal Frequency Division Multiplexing) 통신 시스템의 성능을 분석하였다 전송 채널의 불규칙성은 Main profile의 길이, Peak 위치, Echo profile의 지연 시간, 그리고 Echo profile의 강도로 분류하여 각각에 따른 PDP를 설정하여 각 모델에 따른 OFDM 시스템의 성능 분석을 하였다.
본 논문에서는 ATM 교환기 TMN EMS의 성능 분석을 위한 큐잉 모델을 제시한다. ATM 교환기 관리를 위한 TMN 시스템은 관리자, 대행자, ATM 교환기 등이 계층적인 구조로 이루어져 있다. 관리자는 여러개의 대행자와 통신하며, 대행자는 ATM 교환기의 관리 기능을 대행한다. 우리는 EMS를 구성하는 관리자의 용량과 성능을 예측하기 위하여 큐잉 모델을 정의하였다. 이 모델을 통하여 EMS의 평균 서비스 시간과 용량을 예측할 수 있다.
본 고에서는 통과 대역 DMT ADSL 시스템의 등화기 구조를 설계하고 이를 포함하는 DMT ADSL 시스템 성능 모델을 제시하였다. CSA 지역에서 다중 반송파 변조 방식(multicarrier modulation)을 전송방식으로 하는 6Mb/s급의 ADSL 서비스를 위하여 가입자 루프 및 전송신호 특성을 고려한 노이즈 모델을 고찰하고 DMT ADSL 시스템에서 성능예측을 위한 시뮬레이션 모델을 제시하였다. 그리고 기존에 설치되어 있는 일반 전화선(unshilided twisted pair copper wire)를 이용하여 ATM 환경에서 가입자에게 주문형 비디오(video on demand) 서비스, 화상전화회의 서비스, 고속 인터넷 접속 서비스를 제공하기 위한 서비스 망 구조를 제시하였다.
최근, 국내외적으로 국가차원에서 Grid에 대한 다양한 연구가 이루어지고 Grid 컴퓨팅 기술에 대한 상용화의 추세가 보이면서 Grid 시스템에 참여하는 엔티티의 수가 날로 증가하고 있다. 따라서 Globus에 기반 한 Grid환경에서의 기존의 LDAP시스템은 늘어나는 부하를 처리하기에는 충분하지 못하게 되었고 제공할 수 있는 성능의 한계를 초과하고 있다. 이를 위하여 고성능 Grid환경에 부합되는 새로운 LDAP시스템의 설계가 필수적이고 이를 위해서는 기존 LDAP시스템에 대한 성능분석이 우선시 되어야 한다. 하지만 기존의 대부분의 연구는 읽기 동작이 대부분을 차지하는 기존의 응용들을 위한 성능향상에 목적을 두고 있어서 쓰기 동작이 대부분을 차지하는 Grid환경에 적용하기에는 부적합하다. 본 논문에서는 노드수(n), 도착율(λ), 읽기 확률(Pr)변화에 따른 분산 기반 모델과 복제 기반 모델에서 성능분석의 결과를 제시한다. 이를 위하여 M/M/l 큐잉모델을 기초로 기존 LDAP시스템에 대한 분산과 복제에 기반 한 분석모델을 도출하고, 분석모델을 통한 성능분석의 결과를 제시한다. 본 논문의 목표는 이러한 성능분석의 결과를 바탕으로 고성능 Grid환경에 부합되는 새로운 LDAP시스템의 설계방향을 제시하고자 한다. 또한 이러한 결과들은 고성능 Grid환경에서 LDAP기반의 GIS시스템의 설계에 기초자료 활용할 수 있을 것으로 사료된다.
대상인식 기술을 실제 환경에 적용하기 위해서는 조명 보상 기술 개발이 필수적이다. 본 논문은 조명의 방향 변화로 인한 영상의 변화를 보상하는 방법으로써 레티넥스 모델과 조명-반사율 모델에 주목하고, 이를 다양한 방법으로 구현하고 그 성능을 비교함으로써 효과적인 조명 보상방법을 제시하였다. 본 논문에서는 레티넥스 모델을 단일 스케일 레티넥스, 다중 스케일 레티넥스와 이를 신경망으로 재구성한 레티넥스 신경망, 다중 스케일 레티넥스 신경망으로 구현하였다. 조명 반사율 모델은 조명 영상을 이산코사인변환, 웨이블릿변환을 통한 저주파 필터링과 가우시안 블러로 구한 후, 이를 이용하여 반사율 영상을 계산하여 조명 보상을 수행하도록 하였다. 구현된 조명 보상을 9가지 조명 방향 변화가 존재하는 얼굴 영상에 대해 조명 보상을 수행하여, 그 성능을 측정하고 비교하였으며, 더불어 주성분분석 계수를 이용하여 그 성능을 측정하였다. 실험 결과 조명-반사율 모델이 보다 좋은 성능을 보였으며, 주성분분석 계수를 추출한 경우 전반적인 성능향상을 얻을 수 있었다.
원격탐사 영상을 이용한 지표 속성의 변화를 모니터링 하기 위해서 딥러닝(deep learning) 모델을 이용한 의미론적 영상 분할 방법이 최근에 널리 사용되고 있다. 대표적인 의미론적 영상 분할 딥러닝 모델인 UNet 모델을 비롯하여 다양한 종류의 UNet 기반의 딥러닝 모델들의 성능 향상을 위해서는 학습 데이터셋의 크기가 충분해야 한다. 학습 데이터셋의 크기가 커지면 이를 처리하는 하드웨어 요구 사항도 커지고 학습에 소요되는 시간도 크게 증가되는 문제점이 발생한다. 이런 문제를 해결할 수 있는 방법인 전이학습은 대규모의 학습 데이터 셋이 없어도 모델 성능을 향상시킬 수 있는 효과적인 방법이다. 본 논문에서는 UNet 기반의 딥러닝 모델들을 대표적인 사전 학습 모델(pretrained model)인 VGG19 모델 및 ResNet50 모델과 결합한 세 종류의 전이학습 모델인 UNet-ResNet50 모델, UNet-VGG19 모델, CBAM-DRUNet-VGG19 모델을 제시하고 이를 건물 추출에 적용하여 전이학습 적용에 따른 정확도 향상을 분석하였다. 딥러닝 모델의 성능이 학습률의 영향을 많이 받는 점을 고려하여 학습률 설정에 따른 각 모델별 성능 변화도 함께 분석하였다. 건물 추출 결과의 성능 평가를 위해서 Kompsat-3A 데이터셋, WHU 데이터셋, INRIA 데이터셋을 사용하였으며 세 종류의 데이터셋에 대한 정확도 향상의 평균은 UNet 모델 대비 UNet-ResNet50 모델이 5.1%, UNet-VGG19 모델과 CBAM-DRUNet-VGG19 모델은 동일하게 7.2%의 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.